S.No.	RELATION AND FUNCTION	YEAR	MARKS
1	If $f(x)$ is the invertible function, find the inverse of $f(x) = \frac{3x-2}{5}$	2008	1
2	Let T be the set of all triangles in a plane with R as relation in T given by $R = \{(T_1, T_2): T_1 \cong T_2\}$. Show that R is equivalence relation.	2008	4
3	Let * be a binary operation on N given by a *b=HCF (a , b) where a , b $\in N$ find a *b	2009	1
4	Let $f: N \to N$ be defined by $f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$ $n \forall N$ find whether the	2009	4
	function is bijective.	2010	
5	If $f(x): R \to R$ be defined by $f(x) = (3 - x)^{1/3}$ then find $f0f(x)$	2010	1
6	Show that the relation on the set $N \times N$ by $(a, b)S(c, d) \Rightarrow a + d = b + c$ is equivalence relation.	2010	4
7	Let A={1,2,3}, B={4,5,6,7} and $f = \{(1,4), (2,5), (3,6)\}$ be a function from A to B. State whether f is one-one oe not.	2011	1
8	Let $f: R \to R$ be the defined as $f(x) = 10x + 7$. Find the function $g: R \to R$ such that $g0f = f0g = I_R$. OR A binary operation on the set {0,1,2,3,4,5} is defined as: $a * b = \begin{cases} a+b \ if \ a+b < 6 \\ a+b-6 \ if \ a+b \ge 6 \end{cases}$ Show that zero is the identity for this operation and each element 'a' of the set is invertible with 6- a being the inverse of 'a'	2011	4
9	The binary operation $*R \times R \rightarrow R$ is defined as $a * b = 2a + b$. Find $(2 * 3) * 4$	2012	1
10	Show that $f: N \to N$, given by $f(x) = \begin{cases} x+1 & \text{if } x \text{ is odd} \\ x-1 & \text{if } x \text{ is even} \end{cases}$	2012	4
	is one-one and onto. OR Consider the binary operation $*: R \times R \to R$ and $0: R \times R \to R$ defined as $a * b = a - b $ and $a0b = a$ for all $a, b \in R$. show that the * is commutative but not associative, '0' is associative but not commutative.		
11	Consider $f: R_+ \to [4, \infty)$ given by $f(x) = x^2 + 4$ show that f is invertible with the inverse f^{-1} of given by $f^{-1}(y) = \sqrt{y - 4}$ where R_+ is the set of all non-negative real numbers.	2013	4
12	If $R = \{(x, y): x + 2y = 8\}$ is a relation on N, write the range of R.	2014	1
13	If $f: R \to R$, be given by $f(x) = x^2 + 2$ and $g: R \to R$ be given by $g(x) = \frac{x}{x-1}, x \neq 1$ find $g0f, f0g$ and hence find $f0g(2)$ and $g0f(-3)$	2014	4
14	Determine whether the relation R defined on the set \mathbb{R} of all real number as $R = \{(a, b): a, b \in \mathbb{R} \text{ and } a - b + \sqrt{3} \in S, where S is the set of all irretinal number}\}$ is equivalence relation. OR Let $A = \mathbb{R} \times \mathbb{R}$ and $*$ be the binary operation on A defined as $(a, b) * (c, d) = (a + c, b + d)$. Prove that $*$ is commutative and associative. Find the identity element for $*$ on A. Also write the inverse element of the element (3,-5) in A.	2015	6

15	Let $A = R \times R$ and $*$ be a binary operation on A defined by $(a, b) * (c, d) = (a + c, b + d)$ show that $*$ commutative and associative. Find the identity element for $*$ on A. Also find the inverse of every element $(a, b)\epsilon A$.	2016	6
16	Let $A = \mathbb{Q} \times \mathbb{Q}$ and $*$ be a binary operation on A defined by $(a, b) * (c, d) = (ac, b + ad) (a, b), (c, d) \in A$ determine, whether $*$ commutative and associative. Then, with respect to $*$ on A (i) find the identity element in A (ii) find the invertible elements of A.	2017	6
	OR (~ 4) (4) 47+2		
	Consider $f: R - \left\{-\frac{4}{3}\right\} \to R - \left\{\frac{4}{3}\right\}$ given by $(x) = \frac{4x+3}{3x+4}$. show that f is bijective.		
	Find the inverse of f and hence find $f^{-1}(0)$ and x such that $f^{-1}(x) = 2$		
17	If $a * b$ denotes the larger of 'a' and 'b' and if $aob = a * b + 3$, then write the value of $5o10$, where $*$ and oare the binary operations.	2018	1
18	Let $A = \{x \in Z : 0 \le x \le 12\}$. Show that $R = \{(a, b) : a, b \in A, a - b is divisible by 4\}$ is an equivalence relation. Find the set of all elements related to 1. Also write the equivalence class of [2]. OR	2018	6
	Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{x}{x^2+1}$, $\forall \in \mathbb{R}$ is neither one-		
	one nor onto. Also if $g: \mathbb{R} \to \mathbb{R}$ is defined as $g(x) = 2x - 1$, find $gof(x)$.		
19	Examine the whether the operation $*$ defined on \mathbb{R} , the set of all real number, by $a * b = \sqrt{a^2 + b^2}$ is a binary operation or not, and if it is a binary operation, find whether it is associative or not.	2019	2
20	Check whether the relation defined on the set $A = \{1, 2, 3, 4, 5, 6\}$ as $R = \{(a, b): b = a + 1\}$ is reflexive, symmetric and transitive. OR Let $f: N \to Y$ be a function defined as $f(x) = 4x + 3$, where $Y = \{y \in N: y = 4x + 3, for some x \in N\}$. Show that f is invertible. Find its inverse.	2019	4
21	If $f: R \to R$ is given by $f(x) = (3 - x^3)^{1/3}$ then $fof(x) = \cdots$	2020	1
22	Check if the relation R on the set $A = \{1, 2, 3, 4, 5, 6\}$ defined as $R = \{(x, y) : y \text{ is divisible by } x\}$ is (i) symmetric (ii) transitive OR Prove that $\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3} = \frac{9\pi}{4}\sin^{-1}\frac{2\sqrt{2}}{3}$	2020	2
23	Prove that the relation R on Z defined as $R = \{(x, y) : x - y \text{ is divisible by 5}\}$ is an equivalence relation	2020	4
24			

S.No.	INVERSE TRIGONOMETRIC FUNCTION	YEAR	MARKS
1	Write the principal value of $\cos^{-1}\left(\cos\frac{7\pi}{6}\right)$	2009	1
2	Prove the following: $\cot^{-1} \left[\frac{\sqrt{1+sinx} + \sqrt{1-sinx}}{\sqrt{1+sinx} - \sqrt{1-sinx}} \right]$	2009	4
	OR		

	Solve for x: $2 \tan^{-1}(\cos x) = \tan^{-1}(2 \csc x)$		
3	Write the principal value of $\sec^{-1}(-2)$	2010	1
4	Write the principal value of $\cot^{-1}(-\sqrt{3})$	2010	1
5	Find the value of $\sin^{-1}\left(\sin\frac{4\pi}{5}\right)$	2010	1
6	Prove the following: $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$ OR	2010	4
	If $\tan^{-1}\frac{x-1}{x-2} + \tan^{-1}\frac{x+1}{x+2} = \frac{\pi}{4}$ then find the value of x.		
7	Prove the following: $\tan^{-1} x + \tan^{-1} \frac{2x}{1-x^2} = \tan^{-1} \frac{3x-x^3}{1-3x^2}$	2010	4
	OR 1-x 1-3x		
	Prove the following: cos $[\tan^{-1}{\sin(\cot^{-1}x)}] = \sqrt{\frac{1+x^2}{2+x^2}}$		
8	Find the principal value of $cos^{-1}\left(cos\frac{2\pi}{3}\right) + sin^{-1}\left(sin\frac{2\pi}{3}\right)$	2011	1
9	Prove that: $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$	2011	4
10	Prove that: $\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$ Prove that: $2\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{7} = \tan^{-1}\frac{31}{17}$	2011	4
11	Prove the following: $\tan^{-1} \left[\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} - \sqrt{1-x}} \right] = \frac{\pi}{4} - \frac{1}{2} \cos^{-1} x, -\frac{1}{\sqrt{2}} \le x \le 1$	2011	4
12	Write the principal value of $\tan^{-1}(\sqrt{3}) - \sec^{-1}(2)$	2012	1
13	Prove the following: $\cos(\sin^{-1}\frac{3}{5} + \cot^{-1}\frac{3}{2}) = \frac{6}{5\sqrt{13}}$	2012	4
14	Prove that : $\sin^{-1}\frac{3}{5} + \cos^{-1}\frac{12}{13} = \sin^{-1}\frac{56}{65}$	2012	4
15	Prove that : $\sin^{-1}\frac{3}{5} + \cos^{-1}\frac{12}{13} = \sin^{-1}\frac{56}{65}$ Prove that : $\cos^{-1}\frac{12}{13} + \cos^{-1}\frac{4}{5} = \cos^{-1}\frac{33}{65}$	2012	4
16	Write the principal value of $\tan^{-1}(\sqrt{3}) - \cot^{-1}(-\sqrt{3})$	2013	1
17	Write the value of: $\tan^{-1} \left[2\sin \left(2\cos^{-1} \frac{\sqrt{3}}{2} \right) \right]$	2013	1
18	Show that: $\tan\left(\frac{1}{2}\sin^{-1}\frac{3}{4}\right) = \frac{4-\sqrt{7}}{3}$	2013	4
	OR (2 4) 3		
	Solve the following equation: $\cos(\tan^{-1} x) = \sin(\cot^{-1} \frac{3}{4})$		
19	If $\tan^{-1} x + \tan^{-1} y = \frac{\pi}{4}$, $xy < 1$ then write the value of $x + y + xy$.	2014	1
20	Prove the following: $\tan^{-1} \left[\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} - \sqrt{1-x}} \right] = \frac{\pi}{4} - \frac{1}{2} \cos^{-1} x, -\frac{1}{\sqrt{2}} \le x \le 1$	2014	4
	OR $L_{V}^{1+x-\sqrt{1-x}} 4 2 \sqrt{2}$		
	If $\tan^{-1}\frac{x-2}{x-4} + \tan^{-1}\frac{x+2}{x+4} = \frac{\pi}{4}$ then find the value of x.		
21	If $\tan^{-1}\frac{x-2}{x-4} + \tan^{-1}\frac{x+2}{x+4} = \frac{\pi}{4}$ then find the value of x. Evaluate: $\tan\left\{2\tan^{-1}\left(\frac{1}{5}\right) + \frac{\pi}{4}\right\}$	2015	4
22	Solve for x : $\tan^{-1}(x-1) + \tan^{-1}x + \tan^{-1}(x+1) = \tan^{-1}3x$	2016	4
	OR ((1, 2m ³))		
	Prove that $\tan^{-1} \frac{(6x-8x^2)}{1-12x^2} - \tan^{-1} \frac{4x}{1-4x^2} = \tan^{-1} 2x 2x < \frac{1}{\sqrt{3}}$		
23	Prove that $\tan^{-1} \frac{(6x-8x^3)}{1-12x^2} - \tan^{-1} \frac{4x}{1-4x^2} = \tan^{-1} 2x 2x < \frac{1}{\sqrt{3}}$ If $\tan^{-1} \frac{x-3}{x-4} + \tan^{-1} \frac{x+3}{x+4} = \frac{\pi}{4}$ then find the value of x .	2017	4
24	Find the value of $\tan^{-1}(\sqrt{3}) - \cot^{-1}(-\sqrt{3})$	2018	1
25	Prove that : $3\sin^{-1}x = \sin^{-1}(3x - 4x^3)$. $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$	2018	2
26	Find the value of sin $(\cos^{-1}\frac{4}{5} + \tan^{-1}\frac{2}{3})$ SET-1,2	2019	4
	Solve for x: $\tan^{-1}(x-1) + \tan^{-1}x + \tan^{-1}(x+1) = \tan^{-1}\frac{8}{31}$.		

27	The value of $\sin^{-1}\left(\cos\frac{3\pi}{5}\right)$ (i) $\frac{\pi}{10}$ (ii) $\frac{3\pi}{5}$ (iii) $-\frac{\pi}{10}$ (iv) $-\frac{3\pi}{5}$	2020	1
28	Th value of $\tan^{-1}\left[\frac{1}{2}\cos^{-1}\frac{\sqrt{5}}{3}\right]$	2020	1

S.No.	MATRICES	YEAR	MARKS
1	Find the value of x if $\begin{bmatrix} 3x + y & -y \\ 2y - x & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -5 & 3 \end{bmatrix}$	2009	1
2	Find the value of x if $\begin{bmatrix} x - y & 2 \\ x & 5 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 3 & 5 \end{bmatrix}$ Find the value of x if $\begin{bmatrix} 2x - y & 5 \\ x & 5 \end{bmatrix} = \begin{bmatrix} 6 & 5 \\ 3 & -2 \end{bmatrix}$	2009	1
3	Find the value of x if $\begin{bmatrix} 2x - y & 5 \\ x & 5 \end{bmatrix} = \begin{bmatrix} 6 & 5 \\ 3 & -2 \end{bmatrix}$	2009	1
4	Write the adjoint of the following matrix $\begin{bmatrix} 2 & -1 \\ 4 & 3 \end{bmatrix}$	2010	1
5	A is the square matrix of order 3 and $ A = 7$. write the value of $ adjA $	2010	1
6	Express the following matrix as sum of a symmetric and skew symmetric matrix, and verify the result $\begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix}$	2010	4
7	If A= $\begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$, then find the value of $A^2 - 3A + 2I$	2010	4
8	For the following matrix A and B verify that $(AB)' = B'A'$, $A = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 \\ 2 \end{bmatrix}$	2010	4
9	If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$ write A^{-1} in term of A.	2011	1
10	If a matrix has 5 elements, write all possible orders it can have.	2011	1
11	Find the value of $x + y$ in the following equation: $2\begin{bmatrix} x & 5 \\ 7 & y - 3 \end{bmatrix} + \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix}$	2012	1
12	If $A^T = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$, then find $A^T \cdot B^T$	2012	1
13	Let A be the square matrix of order 3×3 . Write the value of $ 2A $ where $ A = 4$	2012	1
14	Find the value of $x + y$ in the following equation: $2\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$	2012	1
15	If matrix $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $A^2 = kA$ then write the value of k.	2013	1
16	For what value of x is the matrix A= $\begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix}$ a skew matrix ?	2013	1
17	Find the value of b if $\begin{bmatrix} a-b & 2a+c\\ 2a-b & 3c+d \end{bmatrix} = \begin{bmatrix} -1 & 5\\ 0 & 13 \end{bmatrix}$	2013	1
18	If A is square matrix such that $A^2 = A$, then the value of $7A - (I + A)^3$, where I is an identity matrix	2014	1
19	If $\begin{bmatrix} x - y & z \\ 2x - y & w \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 0 & 5 \end{bmatrix}$ then find the value of $x + y$.	2014	1
20	There are two families A and B. there are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommended daily amount of calories is 2400 for men, 1900 for women , 1800 for children and 45 gm of proteins for men, 55 gm for women and 33 gm for children. Represent the above information using matrices. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What	2015	4

	awareness can you create among the people about the balanced diet form this		
	question?		
21	Using elementary operations, find the inverse of the following matrix: $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 0 \end{bmatrix}$ OR	2015	4
	If $A = \begin{bmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}, C = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$, then calculate AC, BC and (A+B) C. Also veriry (A+B)=AC+BC.		
22	If $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$, find α satisfying $0 < \alpha < \frac{\pi}{2}$ when $A + A' = \sqrt{2}I_2$: where A' is transpose of A.	2016	1
23	If A is a 3 \times 3 matrix and $ 3A = K A $, then write the value of k.	2016	1
24	If $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$ and $A^3 - 6A^2 + 7A + kI_3 = 0$	2016	6
25	If for any 2 × 2 matrix A, $A(adjA) = \begin{bmatrix} 8 & 0 \\ 0 & 8 \end{bmatrix}$, then write the value of $ A $.	2017	1
26	If the matrix $A = \begin{bmatrix} 0 & a & -3 \\ 2 & 0 & -1 \\ b & 1 & 0 \end{bmatrix}$ is skew symmetric, then find the value of a and b .	2018	1
27	Given that A= $\begin{bmatrix} 2 & -3 \\ -4 & 7 \end{bmatrix}$, compute A^{-1} and show that $2A^{-1} = 9I - A$.	2018	2
28	Using elementary row operations, find the inverse of the following matrix: $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{bmatrix}$	2018	6
29	If A is square matrix satisfying $A'A = I$, write the value of $ A $ SET-1If $A = \begin{bmatrix} 0 & -1 \\ 0 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 5 \\ 0 & 0 \end{bmatrix}$ find $ AB $.SET-2If A is matrix such satisfying $A'A = I$, write the value of $ A $.SET-3	2019	1
30	If $A = \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$, show that $(A - 2I) (A - 3I) = 0$.	2019	2
31	If $A = \begin{bmatrix} 2 & -3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}$, $X = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ and $Y = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}$ then find $AB + XY$ (i) [28] (ii) [24] (iii) 28 (iv) 24	2020	1
32	(i) [28] (ii) [24] (iii) 28 (iv) 24 If $\begin{bmatrix} x + y & 7 \\ 9 & x - y \end{bmatrix} = \begin{bmatrix} 2 & 7 \\ 9 & 4 \end{bmatrix}$ then $x \cdot y = \cdots$	2020	1
33	Find $adj A$ if $A = \begin{bmatrix} 2 & -1 \\ 4 & 3 \end{bmatrix}$	2020	1
34	If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ then find A^3	2020	1

S	S.	DETERMINANTS	YEAR	MARKS
Γ	No.			

1	$ a-b \ b-c \ c-a $	2009	1
-	Write the value of the following determinants: $\begin{vmatrix} b - c & c - a & a - b \\ c - a & a - b & b - c \end{vmatrix}$	2005	-
2	Find the value of x, form the following : $\begin{vmatrix} x & 4 \\ 2 & 2x \end{vmatrix} = 0$	2009	1
3	Using the properties of the determinant, prove the following	2009	4
	$\begin{vmatrix} 1+x & 1 & 1 \\ 1 & 1+y & 1 \end{vmatrix} = xyz + xy + yz + zx$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
4	Using the properties of the determinant, prove the following	2009	4
	$\begin{vmatrix} 1 & 1+p & 1+p+q \\ 2 & 3+2p & 1+3p+2q \end{vmatrix} = 1$		
	$\begin{vmatrix} 3 & 6 + 3p & 1 + 6p + 3q \end{vmatrix}$		
5	Using the properties of the determinant, prove the following $\begin{vmatrix} x + y & x \end{vmatrix}$	2009	4
	$\begin{vmatrix} x+y & x & x \\ \vdots & 5x+4y & 4x & 2x \end{vmatrix} = x^3$		
	10x + 8y 8x 3x		
6	Using matrices solve the solve the following system of equations: $2x - y + z = 2$	2009	6
	3 , $-x + 2y - z = -4$ $x - y + 2z = 1$ OR		
	Obtain the inverse of the following matrix using elementary		
	operations: $\begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 0 \end{bmatrix}$		
7	What positive value of x makes the following determinants equal? $\begin{vmatrix} 2x & 3 \\ 5 & x \end{vmatrix} =$	2010	1
8	Using the properties of the determinant, prove the following	2010	6
	$\begin{vmatrix} x & x^2 & 1 + px^3 \\ y^2 & 1 + py^3 \end{vmatrix} = (1 + pyyz)(x - y)(y - z)(z - y)$		
	$\begin{vmatrix} y & y^2 & 1 + py^3 \\ z & z^2 & 1 + pz^3 \end{vmatrix} = (1 + pxyz)(x - y)(y - z)(z - x)$		
	OR OR		
	Obtain the inverse of the following matrix using elementary		
	operations: $\begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \end{bmatrix}$		
		2012	
9	Using matrices solve the solve the following system of equations: $x + 2y - 3z = -4$ 2x + 3y + 2z = 2 $3x - 3y - 4z = 11$ OR If <i>a</i> , <i>b</i> and <i>c</i> are positive and	2010	6
	unequal, show that the following determinant is negative : $\Delta = \begin{bmatrix} b & c & a \\ c & a & b \end{bmatrix}$		
10	Evaluate: $\begin{vmatrix} cos 15^0 & sin 15^0 \\ sin 75^0 & cos 75^0 \end{vmatrix}$	2011	1
11	Using the properties of the determinant, and solve for x	2011	4
	x + a - x - x	2011	4
	$\begin{vmatrix} x & x + a & x \end{vmatrix} = 0$		
12	$\begin{vmatrix} x & x \\ x + a \end{vmatrix}$ Using the properties of the determinant, prove the following	2011	4
	x-2 2x-3 3x-4		
	$\begin{vmatrix} x - 4 & 2x - 9 & 3x - 16 \\ x - 8 & 2x - 27 & 3x - 64 \end{vmatrix} = 0$		
13	$\begin{vmatrix} a+x & a-x & a-x \end{vmatrix}$	2011	4
1	Using the properties of the determinant solve for $x : a - x = a - x = 0$		
	Using the properties of the determinant, solve for $x : \begin{vmatrix} a - x & a + x & a - x \\ a - x & a - x & a + x \end{vmatrix} = 0$		

14	Using matrices solve the solve the following system of equations: $4x + 3y + 3$	2012	6
	$3z = 4 \qquad x + 2y + 3z = 45 \ 6 \ x + 2y + 3z = 70$		
15	Using matrices solve the solve the following system of equations: $x + 2y - 3z =$	2012	6
	-4 2x + 3y + 2z = 2 3x - 3y - 4z = 11		-
16	Using matrices solve the solve the following system of equations: $x + 2y + z =$	2012	6
17	7 , $x + 3z = 11 2 x - 3y = 1$ 2 -3 5	2012	1
17	If A _{ij} is the cofactor of the element a_{ij} of the determinant $\begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$, then	2013	1
	write the value of A_{32} and a_{32}		
18	Using the properties of the determinant, prove the following	2013	4
	$\begin{vmatrix} x & x+y & x+2y \\ x & y & y & y \\ y & y & y & y \\ y & y & y$		
	$\begin{vmatrix} x + 2y & x & x + y \\ x + y & x + 2y & x \end{vmatrix} = 9y^{2}(x + y)$		
19	The management committee of a residential colony decided to award some of its members (say x) honesty, some (say y) for helping others and some other (say z) for supervising the workers to keep the colony neat and clean. The sum of all awards is 12, Three times the sum of awardees for cooperation and supervision added to two times of the number of awardees for the honesty is 33. If the sum of the numbers of awardees for honesty and supervision is twice the numbers of awardees for each category. Apart from these value, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.	2013	6
20	Using the properties of the determinant, prove the following $\begin{vmatrix} x + y & x & x \\ 5x + 4y & 4x & 2x \\ 10x + 8y & 8x & 3x \end{vmatrix} = x^{3}$	2014	4
21	Using the properties of the determinant, prove that $\begin{vmatrix} b+c & c+a & a+bx \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{vmatrix} = 2\begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$	2014	4
22	Using the properties of the determinant, prove the following $\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = abc + bc + ca + ab$	2014	4
23	Two school A and B want to award their students selected on the value of sincerity, truthfulness and helpfulness. The school A wants to award Rs. X each, Rs. Y each and Rs. Z each for the three respective value to 3,2 and 1 students respectively with a total award money of Rs. 1600. School B wants to spend Rs. 2300 to award its 4,1 and 3 students on the respective values (by giving the same award money to the three values as before.) If the total amount of award for one prize on each value is Rs. 900, using matrices, find the award money for each value. Apart from these three value, suggest one more value which should be considered for awards.	2014	6
24	If $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, then for any natural number n, find the value of	2015	1
25	Det (A^n) . Use the properties of determinants, prove that $\begin{vmatrix} a^3 & 2 & a \\ b^3 & 2 & b \\ c^3 & 2 & c \end{vmatrix} = 2(a-b)(b-c)(c-a)(a+b+c)$	2015	4

26	For what value of k, the system has unique solution? $x + y + z = 2$, $2x + y - 2$	2016	1
20	z = 3 3x + 2y = kz = 4	2010	-
27	A typist charges Rs. 145 for typing 10 English and 3 hindi pages, while charges for	2016	4
	typing 3 English and 10 Hindi pages are Rs. 180. Using matrices, find the charges		
	of typing one English and one Hindi page separately. However typist charges only		
	Rs. 2 per page from a poor student Shyam for 5 Hindi pages. How much less was		
28	charged from this poor boy? Which values are reflected in this problem? For what values of k, the system of linear equations $x + y + z = 2$, $2x + y - z = 2$	2016	1
20	For what values of k , the system of linear equations $x + y + z = 2$, $2x + y - z = 3$	2010	1
	2. Last here a writer a solution 2		
29	Using properties of determinant, prove that $\begin{bmatrix} (x+y)^2 & zx & zy \\ zx & (y+z)^2 & xy \\ zy & xy & (z+x)^2 \end{bmatrix} =$	2016	6
	Using properties of determinant, prove that $\begin{vmatrix} zx & (y+z)^2 \\ xy \end{vmatrix} =$		
	$zy = xy (z+x)^2$		
	$2xyz(x + y + z)^3$ OR		
	If $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \end{bmatrix}$ and $A^3 - 6A^2 + 7A + kI_3 = 0$ find k.		
	If $A = \begin{bmatrix} 0 & 2 & 1 \\ 0 & 2 & 0 \end{bmatrix}$ and $A^3 - 6A^2 + 7A + kI_3 = 0$ find k.		
30	If A is a skew-symmetric matrix of order 3, then prove that det A=0.	2017	2
31	$ a^2 + 1 - 2a + 1 - 1 $	2017	4
51	Using properties of determinants, prove that $\begin{vmatrix} a + 1 & 2a + 1 & 1 \\ 2a + 1 & a + 2 & 1 \\ a + 2 & 1 \end{vmatrix} = (a - 1)^3$	2017	-
	OR CR		
	Find a matrix A such that $\begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} A = \begin{bmatrix} -1 & -8 \\ 1 & -2 \end{bmatrix}$		
	$\begin{bmatrix} 1 & 0 & A \\ -3 & 4 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ -3 & 4 & 0 \end{bmatrix}$		
32		2017	4
	Determine the product $\begin{vmatrix} -7 & 1 & 3 \end{vmatrix} = 1 - 2 - 2$ and use it to solve the		
	$\begin{bmatrix} 1 & 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 3 \end{bmatrix}$ system of equation $x - y + z = 4$, and $x - 2y - 2z = 9$ and $2x + y + 3z = 1$		
33	[2 -3 5]	2017	6
	If $A = \begin{bmatrix} 3 & 2 & -4 \end{bmatrix}$, find A^{-1} . Hence using A^{-1} solve the system of equation	2017	Ū
	l1 1 -2J		
24	2x - 3y + 5z = 11, 3x + 2y - 4z = -5, x + y - 2z = -3.	2010	
34	Using the properties of the determinant, prove the following $\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$	2018	4
	$\begin{vmatrix} 1 & 1 & 1 \\ 1 + 3y & 1 & 1 \end{vmatrix} = 9(3xyz + xy + yz + zx)$		
	1 1 + 3z 1 + c		
	$\begin{bmatrix} 2 & -3 & 5 \end{bmatrix}$	2018	6
35	If $A = \begin{bmatrix} 3 & 2 & -4 \\ 1 & 1 & 2 \end{bmatrix}$, find A^{-1} . Hence using A^{-1} solve the system of equation		
	2x - 3y + 5z = 11, 3x + 2y - 4z = -5, x + y - 2z = -3.		
36	Using the properties of the determinant, prove that	2019	4
			.
	$\begin{vmatrix} 3a & -a+b & -a+c \\ -b+a & 3b & -b+c \end{vmatrix} = (a+b+c)(bc+ca+ab)$		
	-c+a - c+b - 3c	2015	
37	If $A = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 1 & 2 \end{bmatrix}$, find A^{-1} . Hence using A^{-1} solve the system of equation $x + x^{-1}$	2019	6
	$\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$, $\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$, $\begin{bmatrix} 1 & 2$		
	3y + 4z = 8, 2x + y + 2z = 5, 5x + y + z = 7. OR		
	$[2 \ 0 \ -1]$		
	Find the inverse of the matrix by elementary transformations. 5 1 0		

38	If $A = \begin{bmatrix} p & 2 \\ 2 & p \end{bmatrix}$ and $ A^3 = 125$, then find the value of p.	2019	2
39	If $\begin{vmatrix} 2 & 3 & 2 \\ x & x & x \\ 4 & 9 & 1 \end{vmatrix}$ + 3 = 0 then find the value of x (i) 3 (ii) 0 (iii) -1 (iv) 1	2020	1
40	Using properties of determinants prove that:	2020	6
	$\begin{vmatrix} a - b & b + c & a \\ b - c & c + a & b \\ c - a & a + b & c \end{vmatrix} = a^3 + b^3 + c^3 - 3abc$ OR		
	If $A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3 \end{bmatrix}$ then show that $A^3 - 4A^2 - 3A + 11I_3 = 0$. Hence find	C	
	A^{-1} .		
41	Let $A = \begin{bmatrix} 200 & 50 \\ 10 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 50 & 40 \\ 2 & 3 \end{bmatrix}$ then find $ AB $ $\begin{bmatrix} a & 0 & 0 \end{bmatrix}$	2020	1
42	If $A = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{bmatrix}$ then find the value of det $(adjA)$	2020	1
S.No.	CONTINUITY AND DIFFERENTIABILITY	YEAR	MARKS
1	$d^2y = dy$	2009	4
2	If $y = 3e^{2x} + e^{3x}$, porve that $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$ If $\sin y = x \sin(a + y)$, prove that $\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$	2009	4
2		2005	4
	OR If $(\cos x)^y = (\sin y)^x$, find $\frac{dy}{dy}$		
3	If $(\cos x)^y = (\sin y)^x$, find $\frac{dy}{dx}$ If $y = \frac{\sin^{-1} x}{\sqrt{1-x^2}}$, show that $(1 - x^2)\frac{d^2 y}{dx^2} - 3x\frac{dy}{dx} - y = 0$	2009	4
4	If $y = e^x(\sin x + \cos x)$, then show that $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$	2009	4
5	If $y = \cos^{-1} x$, $x > 1$. then show that: $x(x^2 - 1)\frac{d^2y}{dx^2} + (2x^2 - 1)\frac{dy}{dx} = 0$	2010	4
6	If $y = e^{a \sin^{-1} x}$, $-1 \le x \le 1$, then show that: $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - a^2 y = 0$	2010	4
7	If $y = \cos^{-1}(\frac{3x+4\sqrt{1-x^2}}{5})$, find $\frac{dy}{dx}$.	2010	4
8	Find the relationship between a and b so that the function f defined by: $f(x) =$	2011	4
	$\begin{cases} ax + 1, x \le 3 \\ bx + 1, x > 3 \end{cases}$ is continuous at $x = 3$		
	OR		
	If $y^x = x^y$, show that $\frac{dy}{dx} = \frac{\log x}{\{\log (ex)\}^2}$		
9	If $x = \tan\left(\frac{1}{a}\log y\right)$, then show that: $(1+x^2)\frac{d^2y}{dx^2} + (2x-a)\frac{dy}{dx} = 0$	2011	4
10	If $x = \sqrt{a^{\sin^{-1}t}}$, $y = \sqrt{a^{\cos^{-1}t}}$, then show that: $\frac{dy}{dx} = -\frac{y}{x}$	2012	4
	OR		
	Differentiate $\tan^{-1}\left[\frac{\sqrt{1+x^2}-1}{x}\right]$ with respect to x		
11	If $x = a(\cos t + t \sin t)$ and $y = a(\sin t - t \cos t), 0 < t < \frac{\pi}{2}$, find $\frac{d^2y}{dt^2}, \frac{d^2x}{dt^2}$ and	2012	4
	$\frac{d^2y}{dx^2}$		
12	If $z = a\left(\cos t + \log tan\frac{t}{2}\right)$, $y = a \sin t \operatorname{find} \frac{d^2y}{dt^2}$ and $\frac{d^2y}{dx^2}$	2012	4
13	If $y = (\tan^{-1} x)^2$, show that $: (1 + x^2)^2 \frac{d^2 y}{dx^2} + 2x(1 + x^2)\frac{dy}{dx} = 2.$	2012	4

14	If $y^x = e^{y-x}$ prove that $\frac{dy}{dx} = \frac{(1+\log y)^2}{\log y}$	2013	4
15	Differentiate the following with respect to x : $\sin^{-1}(\frac{2^{x-1} \cdot 3^x}{1+(36)^x})$	2013	4
16	Find the value of k for which $f(x) = f(x) = \begin{cases} \frac{\sqrt{1+kx} - \sqrt{1-kx}}{x}, & if -1 \le x < 0\\ \frac{2x+1}{2x-1}, & if \ 0 \le x < 1 \end{cases}$	2013	4
	If $x = a \cos^3 \theta$ and $y = a \sin^3 \theta$, then find the value of $\frac{d^2 y}{dx^2}$ at $\theta = \frac{\pi}{6}$		
17	If $x = a \sin 2t(1 + \cos 2t)$ and $y = b \cos 2t (1 - \cos 2t)$, then show that at t= $\frac{\pi}{4}$, $\frac{dy}{dx} = \frac{b}{a}$	2014	4
18	If $x = ae^{x}(\sin\theta - \cos\theta)$ and $y = be^{x}(\sin\theta + \cos\theta)$ then find the value of $\frac{dy}{dx}at\theta = \frac{\pi}{4}$	2014	4
19	If $x = \cos t(3 - 2\cos^2 t)$ and $y = \sin t(3 - 2\sin^2 t)$ find the value of $\frac{dy}{dx}$ at $t = \frac{\pi}{4}$	2014	4
20	Discuss the continuity and differentiability of the function $f(x) = x + x - 1 $ in the interval (-1,2).	2015	4
21	If = $a(\cos 2t + 2t \sin 2t)$ and $y = a(\sin 2t - 2t \cos 2t)$, find $\frac{d^2y}{dx^2}$.	2015	4
22	If $(ax + b)e^{y/x} = x$, then show that $x^3\left(\frac{d^2y}{dx^2}\right) = (x\frac{dy}{dx} - y)^2$	2015	4
23	If $f(x) = \begin{cases} \frac{\sin(a+1)x+2\sin x}{x}, & x < 0\\ \frac{2}{\sqrt{1+bx-1}}, & x > 0 \end{cases}$ is continuous at $x = 0$ then find the value of	2016	4
24	a and b. If xcos $(a + y) = \cos y$ then show that $\frac{dy}{dx} = \frac{\cos^2(a+y)}{\sin a}$ Hence show that $\frac{d^2y}{dx^2} + \sin^2(a+y)\frac{dy}{dx} = 0$ OR If $y = \sin^{-1}\left[\frac{6x - 4\sqrt{1 - 4x^2}}{5}\right]$ find $\frac{dy}{dx}$	2016	4
25	$\frac{\sin^2 \left[\frac{5}{4x}\right]}{5} \frac{\sin^2 \left[\frac{1}{4x}\right]}{\frac{1}{4x}}$ Determine the value of 'k' for which the following function is continuous at $x = 3$. $f(x) = \begin{cases} \frac{(x+3)^2 - 36}{x-3}, & x \neq 3 \\ k, & x = 3 \end{cases}$	2017	1
26	Find the value of c in Rolle's theorem for the function $f(x) = x^2 - 3x, [-\sqrt{3}, 0]$.	2017	2
27	Find the value of c in Rolle's theorem for the function $f(x) = x^2 - 3x$, $[-\sqrt{3}, 0]$. If $y^x + x^y = a^b$, then find $\frac{dy}{dx}$ OR If $e^y(x+1) = 1$ then show that $\frac{d^2y}{dx^2} = (\frac{dy}{dx})^2$	2017	4
28	Differentiate $\tan^{-1}\left(\frac{1+\cos x}{\sin x}\right)$ w.r. t. x.	2018	2
29	If $(x^2 + y^2)^2 = xy$, find $\frac{dy}{dx}$ OR	2018	4
30	If $x = a (2\theta - \sin 2\theta)$ and $y = a(1 - \cos 2\theta)$, find $\frac{dy}{dx}$ when $\theta = \frac{\pi}{4}$	2018	4
31	If $y = \sin(\sin x)$, prove that $\frac{d^2y}{dx^2} + \tan x \frac{dy}{dx} + y\cos^2 x = 0$. If $y = x x $, find $\frac{dy}{dx}$ for $x < 0$ SET-1	2019	1
	Differentiate $e^{\sqrt{3x}}$ with respect to x. SET-2	2010	-
32	If $y = \cos \sqrt{3x}$, then find $\frac{dy}{dx}$. SET-3 if $x\sqrt{1+y} + y\sqrt{1+x} = 0$ and $x \neq y$, prove that $\frac{dy}{dx} = \frac{-1}{(x+1)^2}$.	2019	4

	OR		
	If $(\cos x)^y = (\sin y)^x$, find $\frac{dy}{dx}$ SET-1,2		
	If $x = ae^t(\sin t + \cos t)$ and $y = ae^t(\sin t - \cos t)$ then prove that $\frac{dy}{dx} = \frac{x+y}{x-y}$		
	OR		
	Differentiate $x^{\sin x} + (\sin x)^{\cos x}$ with respect to x. SET-3		
33	If $(x-a)^2 + (y-b)^2 = c^2$ for $c > 0$ prove that $\frac{\left(1 + \left(\frac{dy}{dx}\right)^2\right)^{3/2}}{\frac{d^2y}{dx^2}}$ is constant	2019	4
	independent of a and b. SET-1,3		
	If $(a + bx)e^{y/x} = x$, $(x\frac{dy}{dx} - y)^2$ SET-2		
34	The number of points of discontinuity of the function $f(x) = x - x + 1 = \cdots$	2020	1
35	Find the value of $\frac{dy}{dx}$ at $\theta = \frac{\pi}{3}$, if $x = \cos \theta - \cos 2\theta$, $y = \sin \theta - \sin 2\theta$	2020	2
36	If $y = \sin^{-1}\left(\frac{\sqrt{1-x}+\sqrt{1+x}}{2}\right)$ then prove that $\frac{dy}{dx} = \frac{-1}{2\sqrt{1-x^2}}$	2020	4
	OR		
	Verify the Rolle's theorem for the function $y = e^x \cos x$ in the interval $\left -\frac{\pi}{2}, \frac{\pi}{2} \right $.		
37	$f(x) = 2 x + 2 \sin x + 6$ then the right hand derivative of $f(x)$ at $x = 0$	2020	1
38	Find the derivative of $x^{\log x}$	2020	1
39	If $f(x) = x x $ then $f'(x) =$	2020	1
	$\dot{0}$		

S.No.	APPLICATION OF DERIVATIVE	YEAR	MARKS
1	The length x of a rectangle is decreasing at the 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x=8cm and y= 6 cm, find the rate of change of (i) the perimeter (ii) the area of the rectangle. OR	2009	4
	Find the interval in which the function f given by $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$ is strictly increasing or strictly decreasing.		
2	If the sum of the hypotenuse and a side of a right angled triangle is given, show that the area of triangle is maximum, when the angle between them is $\frac{\pi}{3}$ OR A manufacturer can sell x items at a price of Rs. $(5-\frac{x}{100})$ each. The cost price of x items is Rs. $(500+\frac{x}{5})$. Find the number of items he should sell to earn maximum	2009	6
3	profit. Find the equation of tangent and normal to the curve $x = (1 - \cos \theta), y = \theta - \sin \theta$ at $\theta = \frac{\pi}{4}$	2010	6
4	Show that the volume of the greatest cylinder that can be inscribed in a cone of height 'h' and semi-vertical angle ' α ' is $\frac{4}{27}\pi h^3 tan^2 \alpha$	2010	6
5	The length three side of a trapezium other than the base is 10 cm each; find the area of the trapezium, when it is maximum.	2010	6
6	Find the interval in which the function f given by $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$ is strictly increasing or strictly decreasing	2010	6
7	Prove that the function $y = \frac{4 \sin \theta}{2 + \cos \theta} - \theta$ is an increasing in the interval $\left[0, \frac{\pi}{2}\right]$ OR If the radius of a sphere is measured as 9 cm with an error of 0.03cm, then find the approximate error in calculating its surface area.	2011	4
8	Show that the right- circular cone of least curved surface area and given volume	2011	6

angents to the curve $y = x^3 + 2x - 4$, which are	2016	4
on $y = \frac{4\sin\theta}{2+\cos\theta} - \theta$ is an increasing in the interval $\left[0, \frac{\pi}{2}\right]$ OR ertical angle of maximum volume and given slant height is	2010	U
$y^2 = 4$ at any point on it in the first quadrant makes on x and y axis respectively, O being the centre of the um distance value of (OA+OB). $4\sin\theta$	2015 2016	6
otenuse and a side of a right angled triangle is given, show gle is maximum, when the angle between them is $\frac{\pi}{3}$	2014	6
of the cylinder of maximum volume that can be inscribed R is $\frac{2R}{\sqrt{3}}$. Also find the maximum volume.	2014	6
e if the right circular cone of maximum volume that can be of radius r is $\frac{4r}{3}$. Also show that the maximum volume of plume of the sphere.	2014	6
OR the tangent and normal to the curve $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at the		
rangents to the curve $3x^2 - y^2 = 8$ which passes through r which $y = [x(x - 2)]^2$ is increasing function.	2014	4
5, find the marginal revenue when x=5, and write which on indicates. reatest rectangle that can be inscribed in an ellipse $\frac{x^2}{a^2}$ +	2013	6
nt on the welfare of the employees of a firm is te of change of its total revenue (marginal revenue). If the received from the sale of x units of a product is given by	2013	1
square is to be made out of a given quantity of cardboard cs. Show that the maximum volume of the box is $\frac{c^3}{6\sqrt{3}}$		
of the right circular cylinder of greatest curved surface cribed in a given cone is half of that of the cone.	2012	6
leaning against a wall. The bottom of the ladder is pulled ay from the wall, at the rate of 2 cm/s. How fast is its lecreasing when the foot of the ladder is 4m away from	2012	4
pe of a rectangle surmounted by an equilateral triangle. If window is 12m, find the dimensions of the rectangle that st area of the window.		
to $\sqrt{2}$	times the radius of the base.	times the radius of the base.

	13erpendicular to line $x + 14y + 3 = 0$.		
20	The volume of a cube is increasing at the rate of $9\frac{cm^3}{s}$. How fast is its surface	2017	2
	area increasing when the length of an edge is 10cm ?		
21	Show that the function $f(x) = x^3 - 3x^2 + 6x - 100$ id increasing function on	2017	2
21	R.	2017	2
22	The length x_i of a rectangle is decreasing at he rate of 5cm/minute and the	2017	2
	width y, is increasing at the rate of 4 cm/minute. When $x = 8$ cm and $y = 6$	/	-
	cm, find the rate of change of the area of the rectangle.		
23	The volume of the sphere is increasing at the rate of 8 $\frac{cm^3}{s}$. Find the rate at	2017	2
	which its surface area is increasing when the radius of the sphere is 12 cm.		
24	Show that the surface area of a closed cuboid with square base and given	2017	6
27	volume is minimum, when it is a cube.	2017	0
	AB is the diameter of the circle and C is any point on the circle. Show that the	2017	6
	area of triangle ABC is maximum, when it is an isosceles triangle.		•
25	A window in the form of rectangle surmounted by a semicircular opening. The		
	total perimeter of the window is 10 m. Find the dimensions of the window to		
	admit maximum light through the whole opening.		
26	The total cost $C(x)$ associated with the production of x units of item is given by	2018	2
	$C(x) = 0.005x^3 - 0.02x^2 + 30x + 5000$. Find the marginal cost when 3 units		
	are produced, where by marginal cost we mean the instantaneous rate of		
	change of total cost at any level of output.		
27	Find the equation of tangent and normal to the curve16 $x^2 + 9y^2 = 145$ at the	2018	4
	point (x_1, y_1) where $x_1 = 2$ and $y_1 > 0$. OR		
	Find the intervals in which the function $f(x) = \frac{x^4}{4} - x^3 - 5x^2 + 24x + 12$ is (a)		
	strictly increasing, (b) strictly decreasing.		
28	An open tank with square base and vertical sides is to be constructed from a	2018	4
	metal sheet so as to hold a given quantity of water. Show that the cost of		
	material will be least when depth of the tank is half of its width. If the cost is to		
	be borne by nearby settled lower income families, for whom water will be		
20	provided, what kind of value is hidden in this question?	2010	4
29	Find the equation of the normal to the curve $x^2 = 4y$ which passes through the point $(-1, 4)$. SET-1	2019	4
	The volume of a cube is increasing at the rate of 8 $\frac{cm^3}{s}$. How fast is the		
20	surface area increasing when the length of its edge is 12cm. SET-2	2010	6
30	Prove that the height of the cylinder of maximum volume that can be inscribed in a subscription of radius P is 2^{R} . Also find the maximum volume SET 1	2019	6
	sphere of radius R is $\frac{2R}{\sqrt{3}}$. Also find the maximum volume. SET-1		
21	Find the point on the curve $y^2 = 4x$, which is nearest to the point $(2, -8)$. SET-2	2020	1
31	The slop of tangent to the curve $y = x^3 - x$ at the point (2, 6) is OR	2020	1
	The rate of change of area of circle with respect to its radius r, when $r = 3 \ cm$ is		
32	Show that the function $f(x) = \frac{x}{3} + \frac{3}{x}$ is decreases in the interval $(-3, 0) \cup (0, 3)$	2020	2
33	Show that the function f defined by $f(x) = (x - 1)e^x + 1$ is an increasing function	2020	2
55	for all $x > 0$.	2020	-
34	Find the intervals in which $f(x) = (x - 1)^3 (x - 2)^2$ is (a) strictly increasing (b) strictly	2020	6
	decreasing.		
	OR		
	Find the dimension of restangle of perimeter 26 on which will succe out a value of		
	Find the dimension of rectangle of perimeter 36 cm which will sweep out a volume as large as possible, when revolved about one of its side. Also find the maximum volume.		
	וווע נוופ ווומאווועווו Volume.		

S.No.	INTEGRAL	YEAR	MARKS
1	Evaluate: $\int \frac{\sin\sqrt{x}}{\sqrt{x}}$	2009	1
2	Evaluate: $\int_{0}^{\frac{1}{\sqrt{2}}} \frac{1}{\sqrt{1-r^2}}$	2009	1
3	Evaluate: $\int \frac{\cos\sqrt{x}}{\sqrt{x}}$	2009	1
4	Evaluate: $\int \frac{\sec^2 \sqrt{x}}{\sqrt{x}}$	2009	1
5	Evaluate: $\int \frac{dx}{\sqrt{5-4x-2x^2}}$ OR Evaluate: $\int x \sin^{-1} x dx$	2009	4
6	Evaluate: $\int_0^{\pi} \frac{x dx}{a^2 \cos^2 x + b^2 \sin^2 x}$	2009	6
7	Evaluate: $\int \sec^2(7-4x) dx$	2010	1
8	Write the value of the following integral: $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} sin^5 x dx$	2010	1
9	Evaluate: $\int \frac{5x+3}{\sqrt{x^2+4x+10}} dx$	2010	4
10	Evaluate: $\int_{1}^{2} \frac{5x^2}{x^2+4x+3} dx$	2010	4
11	Evaluate: $\int \frac{x+2}{\sqrt{(x-2)(x-3)}} dx$	2010	4
12	Evaluate: $\int \frac{x+2}{\sqrt{(x-2)(x-3)}} dx$ Evaluate: $\int \frac{e^{\tan^{-1}x}}{1+x^2} dx$	2011	1
13	Evaluate: $\int (ax + b)^3 dx$	2011	1
14	Evaluate: $\int \frac{dx}{\sqrt{1-x^2}}$	2011	1
15	Evaluate: $\int \frac{(\log x)^2}{x} dx$	2011	1
16	Evaluate: $\int_0^1 \log(\frac{1}{x} - 1) dx$	2011	4
17	Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{x + \sin x}{1 + \cos x} dx$	2011	4
18	Evaluate: $\int_0^{\frac{\pi}{4}} \log(1 + \tan x) dx$	2011	4
19	Evaluate: $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1+\sqrt{tanx}} \mathbf{OR}$ Evaluate: $\int \frac{6x+7}{\sqrt{(x-5)(x-4)}} dx$	2011	6
20	Evaluate: $\int_0^2 \sqrt{4 - x^2} dx$	2012	1
21	Given $e^x(1 + \tan x) \sec x dx = e^x f(x) + c$. Write $f(x)$ satisfying the above	2012	1
22	Evaluate: $\int_{-1}^{2} x^3 - x dx$ OR Evaluate: $\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$	2012	4
23	Evaluate: $\int \frac{x \sin^{-1} x}{\sqrt{1-x^2}} dx$ OR Evaluate: $\int \frac{1+x^2}{(x-1)^2(x+3)} dx$	2012	6
24	Evaluate: $\int \frac{\cos 2x - \cos 2\alpha}{\cos x - \cos \alpha} dx$ OR Evaluate: Evaluate: $\int \frac{x+2}{\sqrt{x^2+2x+3}} dx$	2013	4
25	Evaluate: $\int \frac{dx}{x(x^5+3)}$	2013	4

26	Evaluate: $\int_0^{2\pi} \frac{1}{1+e^{\sin x}} dx$	2013	4
27	Evaluate: $\int_{1}^{3} [x - 1 + x - 2 + x - 3] dx$	2013	4
28	<i>Evaluate</i> : $\int \frac{1+x^2}{(x^2+4)(x^2+25)} dx$	2013	4
29	Evaluate: $\int \frac{1+x^2}{(x^2+4)(x^2+25)} dx$ Evaluate: $\int \frac{1+2x^2}{(x^2+4)x^2} dx$	2013	4
30	Evaluate: $\int_{1}^{3} [x-5 + x-2 + x-3] dx$	2013	4
31	If $f(x) = \int_0^x t \sin t dt$, then write the value of $f'(x)$.	2014	1
32	Evaluate: $\int_{2}^{4} \frac{x}{1+x^2} dx$	2014	1
33	Evaluate: $\int_{e}^{e^2} \frac{dx}{x \log x}$	2014	1
34	If $\int_0^a \frac{1}{4+x^2} dx = \frac{\pi}{8}$ then find the value of a	2014	1
35	Evaluate: $\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$ OR Evaluate: $\int \frac{x+2}{\sqrt{x^2+5x+6}} dx$	2014	4
36	Evaluate: $\int \frac{dx}{\cos^4 x + \sin^4 x}$	2014	6
37	Evaluate: $\int (\sqrt{\cot x} + \sqrt{\tan x}) dx$	2014	6
38	Evaluate: $\int \frac{dx}{\cos^4 x + \sin^4 x + \sin^2 x \cos^2 x}$	2014	6
39	Evaluate: $\int \frac{\sin x - x \cos x}{x(x + \sin x)} dx \operatorname{OR} \int \frac{x^3}{(x - 1)(x^2 + 1)} dx$	2015	4
40	Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{\cos^2 x}{1 + 2\sin^2 x} dx$	2015	4
41	Evaluate: $\int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{3 + \sin 2x} dx$	2015	4
42	Find $\int (x+3)\sqrt{3-4x-x^2} dx$	2016	4
43	Evaluate: $\int_{-2}^{2} \frac{x^2}{1+5^x} dx$	2016	4
44	$\int \frac{(2x-3)e^{2x}}{(2x-3)^3} dx \qquad \text{OR} \qquad \int \frac{x^2+x+1}{(x+2)(x^2+1)} dx$	2016	4
45	Find : $\int \frac{\sin^2 x - \cos^2 x}{\sin x \cos x} dx$	2017	1
46	Find: $\int \frac{dx}{5-8x-x^2}$	2017	2
47	Evaluate: $\int \frac{\cos\theta d\theta}{(4+\sin^2\theta)(5-4\cos^2\theta)}$	2017	4
48	<i>Evaluate</i> : $\int_0^{\pi} \frac{x \tan x}{\sec x + \tan x} dx$ OR Evaluate: $\int_1^4 [x - 1 + x - 2 + x - 2] dx$	2017	4
49		2017	4
50	$[x - 4]] dx$ $Evaluate: \int \frac{\sin\theta d\theta}{(4 + \cos^2\theta)(2 - \sin^2\theta)}$ Find: $\int \frac{e^x}{(e^x + 2)(e^x - 1)^2} dx$	2017	4
	Find: $\int \frac{\int dx}{(e^x+2)(e^x-1)^2} dx$		
51	Evaluate: $\int \frac{\cos 2x + 2\sin^2 x}{\cos^2 x} dx$	2018	2
52	Evaluate: $\int \frac{2\cos x dx}{(1-\sin x)(1+\sin^2 x)}$	2018	4
53	Evaluate: $\int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{16 + 9 \sin 2x} dx$	2018	4

54		2010	6
54	Evaluate: $\int_{1}^{3} (x^{2} + 3x + e^{x}) dx$ as the limit of sum	2018	0
55	Find $\int \sqrt{3-2x-x^2} dx$	2019	2
56	Find: Find: $\int \frac{\sin^3 x + \cos^3 x}{\sin^2 x \cos^2 x} dx$ OR Find: $\int \frac{(x-3)e^x}{(x-1)^3} dx$ SET-1,2 Find: $\int \frac{(x-5)e^x}{(x-3)^3} dx$ SET-3	2019	2
x57	Find : $\int \frac{x^2 + x + 1}{(x+2)(x^2+1)} dx$	2019	4
58	Prove that $\int_0^a f(x) dx = \int_0^a f(a - x) dx$ and hence evaluate: $\int_0^{\frac{\pi}{2}} \frac{x}{\sin x + \cos x} dx$	2019	4
59	$\int_{0}^{\frac{\pi}{8}} tan^{2}(2x)dx = (i)\frac{4-\pi}{8} (ii)\frac{4+\pi}{8} (iii)\frac{4-\pi}{4} (iv)\frac{4-\pi}{2}$	2020	1
60	Find $\int \frac{2^{x+1}-5^{x-1}}{10^x} dx$	2020	1
61	Evaluate $\int_0^{2\pi} \sin x dx$	2020	1
62	If $\int_0^a \frac{1}{1+4x^2} dx = \frac{\pi}{8}$ then find the value of <i>a</i> OR Find $\int \frac{dx}{\sqrt{x+x}}$	2020	1
63	Evaluate: $\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx.$	2020	4
64	Find $\int sin^5 \frac{x}{2} \cos \frac{x}{2} dx$	2020	1
65	Evaluate : $\int_{-1}^{2} x^{3} - x dx$	2020	4
66	Find $\int \frac{1}{x(1+x^2)} dx$	2020	1
67	If $[x]$ denotes the greatest integer function then $\int_0^{3/2} [x^2] dx$	2020	1
68	Evaluate $\int_0^1 \sqrt{3 - 2x - x^2} dx$	2020	4

S.No.	APPLICATION OF INTEGRAL	YEAR	MARKS
1	Find the area bounded by the curves $y^2 = 4ax$ and $x^2 = 4ay$	2009	6
2	Find the area of the region included between the parabola $y^2 = x$ and the line	2009	6
	x + y = 2		
3	Find the area of the region included between the parabola $3x^2 = 4y$ and the	2009	6
	line $3x - 2y + 12 = 0$		
4	Find the area of the circle $4x^2 + 4y^2 = 9$ which is interior to the parabola $x^2 =$	2010	6
	4 <i>y</i> .		
	OR		
	Using integration, find the area of the triangle ABC, coordinate of whose		
	vertices are A(4,1), B(6,6) and C (8,4).		
5	Sketch the curve graph of $y = x + 3 $ and valuate the area under the curve	2011	6
	y = x + 3 above x – axis and between x =-6 to $x = 0$.		
6	Find the area of the region $\{(x, y): x^2 + 4y^2 \le 4, x + y \ge 2\}$	2012	6

7	Find the area of the region bounded by the parabola $y^2 = x$ and $y = x $	2013	6
8	Using integration, find the area of the region bounded by the triangle whose vertices are (-1,2), (1,5) and (3,4).	2014	6
9	If the area bounded by the parabola $y^2 = 16ax$ and line $y = 4mx$ is $\frac{a^2}{12}$ units, then using integration, find the value of m .	2015	6
10	Using integration, find the area of the region bounded by the triangle whose vertices are (2,-2), (4,3) and (1,2).	2016	6
11	Using integration, find the area of the triangle ABC, coordinate of whose vertices are A(4,1), B(6,6) and C (8,4). OR Find the area enclosed between parabola $4y = 3x^2$ and the straight line $3x - 3x^2$	2017	6
	2y + 12 = 0		
12	Using integration, find the area of the region in the first quadrant enclosed by the x-axis , the line $y = x$ and the circle $x^2 + y^2 = 32$.	2018	6
13	Using integration, find the area of the region bounded by the triangle whose vertices are (1,0), (2,2) and (3,1).	2019	6
	Using method of integration, find the area of the region enclosed between two circles $x^2 + y^2 = 4$ and $(x - 2)^2 + y^2 = 4$. SET-1 Find $\int_1^3 (x^2 + 2 + e^{2x}) dx$		
	OR Using integration, find the area of the triangular region whose sides have the equations $y = 2x + 1$, $y = 3x + 1$ and $x = 4$. SET-2		
14	Find the area lying in first quadrant and enclosed by x-axis, the line $y = x$ and circle $x^2 + y^2 = 32$.	2020	6
15	Using integration find the area of the region bounded by $\{(x, y): 0 \le y \le x^2, 0 \le y \le x, 0 \le x \le 2\}$	2020	6
S.No.	DIFFRENTIAL EQUATIONS	YEAR	MARK
1	Form the differential equation representing the family of curve given by $(x - a)^2 + 2y^2 = a^2$ where <i>a</i> is constant	2009	4
2	Solve the following differential equation: $x \frac{dy}{dx} = y - xtan(\frac{y}{x})$	2009	4
3	Solve the following differential equation: $cos^2 x \frac{dy}{dx} + y = \tan x$	2009	4
4	Form the differential equation of the family of circles touching the y- axis at origin.	2009	4
5	Solve the differential equation: $(x^2 - 1)\frac{dy}{dx} + 2xy = \frac{1}{x^{2-1}}; x \neq 1$ OR Solve the differential equation: $\sqrt{1 + x^2 + y^2 + x^2y^2} + xy\frac{dy}{dx} = 0$	2010	4
6	Solve the differential equation: $(x^2 + 1)\frac{dy}{dx} + 2xy = \sqrt{x^2 + 4}$	2010	4
0	OR		
	OR Solve the differential equation: $(x^3 + x^2 + x + 1)\frac{dy}{dx} = 2x^2 + x$		
7	OR	2010	4
	OR Solve the differential equation: $(x^3 + x^2 + x + 1)\frac{dy}{dx} = 2x^2 + x$ Show that the differential equation $(x - y)\frac{dy}{dx} = x + 2y$, is homogeneous and	2010	4

10	Solve the differential equation: $x dy - y dx = \sqrt{x^2 + y^2} dx$	2011	4
11	Solve the differential equation: $(y + 3x^2)\frac{dx}{dy} = x$	2011	4
12	Solve the differential equation: $x dy - (y + 2x^2)dx = 0$	2011	4
13	Solve the differential equation: $(1 + x^2)dy + 2xy dx = \cot x dx$; $x \neq 0$	2012	4
14	Find the particular solution of the differential equation $\frac{dy}{dx} + y \cot x = 4x cosecx, (x \neq 0) given that when x = \frac{\pi}{2}, y = 0$	2012	4
15	Find the particular solution of the differential equation $x \frac{dy}{dx} - y + xsin\left(\frac{y}{x}\right) = 0$. given that when $x = 2$, $y = \pi$	2012	4
16	Write the differential equation representing family of curve $y = mx$ where m is arbitrary constant.	2013	1
17	Write the degree of the differential equation: $\left(\frac{dy}{dx}\right)^4 + 3x\frac{d^2y}{dx^2} = 0$	2013	1
18	Write the degree of the differential equation: $x(\frac{d^2y}{dx^2})^3 + y(\frac{dy}{dx})^4 + x^3 = 0$	2013	1
19	Find the particular solution of the differential equation: $(\tan^{-1} y - x)dy = (1 + y^2)dx$ given that when $x = 0$, $y = 0$	2013	4
20	Show that the differential equation $x \frac{dy}{dx} sin\left(\frac{y}{x}\right) + x - ysin\left(\frac{y}{x}\right) = 0$ is homogeneous. Find the particular solution of this differential equation given that $x = 1$, $y = \frac{\pi}{2}$	2013	4
21	Show that the differential equation $(xe^{y/x} + y) dx = x dy$ is homogeneous. Find the particular solution of this differential equation given that $x = 1$, $y = 1$	2013	4
22	Find the particular solution of the differential equation $\frac{dy}{dx} = 1 + x = y + xy$, given that $y = 0$ when $x = 1$	2014	4
23	Solve the differential equation: $(x^2 + 1)\frac{dy}{dx} + y = e^{\tan^{-1}x}$	2014	4
24	Find the particular solution of the differential equation $x(1 + y^2)dx - y(1 + x^2)dy = 0$ given that $y = 1$ when $x = 0$	2014	4
25	Find the particular solution of the differential equation $log\left(\frac{dy}{dx}\right) = 3x + 4y$ given that $y = 0$ when $x = 0$	2014	4
26	Find the sum of the order and degree of the following differential equation: $y = x \cdot \left(\frac{dy}{dx}\right)^3 + \frac{d^{2y}}{dx^2}$	2015	1
27	Find the solution of the differential equation: $x\sqrt{1+y^2} dx + y\sqrt{1+x^2} dy = 0.$	2015	1
28	Show that the differential equation $(x - y)\frac{dy}{dx} = x + 2y$ is homogeneous and solve it. OR Find the differential equation of the family of curves $(x - h)^2 + (y - k)^2 =$	2015	6
	r^2 , where h and k are arbitrary constants.	2242	
29	Find the particular solution of this differential equation $ye^{x/y}dx + (y - 2xe^{x/y})dy = 0$ given that $x = 0$, $y = 1$ is homogeneous.	2016	4
30	Find the particular solution of this differential equation $\frac{dy}{dx} = -\frac{x+y\cos x}{1+\sin x}$ given that , $y = 1$ whren $x = 0$.	2016	4
31	Solve the differential equation: $(\tan^{-1} x - y)dx = (1 + x^2)dy$	2017	4

4S.No.	VECTOR ALGEBR	YEAR	MARKS
42	Find the general solution of the the differential equation $\frac{dy}{dx} + \frac{1}{x} = \frac{e^y}{x}$	2020	4
	condition $(x + 1)\frac{dy}{dx} = 2e^{-y} + 1$; $y = 0$ when $x = 0$.		4
41	$2\left(\frac{dy}{dx}\right)^2 + x\left(\frac{dy}{dx}\right) - y = 0$ Find the solution of the differential equation given below, satisfying the given	2020	4
40	Show that the function $y = ax + 2a^2$ is solution of the differential equation	2020	1
39	Solve the differential equation: $x \frac{dy}{dx} = y - x \tan \frac{y}{x}$ OR $\frac{dy}{dx} = -\left[\frac{x + y \cos x}{1 + \sin x}\right]$	2019	4
	Find the general solution of the differential equation $\frac{dy}{dx} = e^{x+y}$. SET-2		
38	Find the differential equation of the family of curves $y = Ae^{2x} + Be^{-2x}$, where A and B are arbitrary constant. SET-1	2019	2
20	$\left(\frac{dy}{dx}\right)^2 = 2x^2 \log(\frac{d^2y}{dx^2})$ SET-1,2 Find the differential equation representing the family of curves $y = ae^{2x+b}$, where <i>a</i> arbitrary constant. SET-3	2010	2
37	Find the order and degree (id defined) of the differential equation $\frac{d^2y}{dx^2} + x$	2019	1
	Find the particular solution of the differential equation $\frac{dy}{dx} + 2y \tan x = \sin x$, given that $y = 0$ when $x = \frac{\pi}{3}$.		
	$(2 - e^x)sec^2xdy$ Given that $y = \frac{\pi}{4}$ when $x = 0$ OR		
36	where <i>a</i> and <i>b</i> are arbitrary constant. Find the particular solution of the differential equation $e^x \tan y dx$ +	2018	4
35	Find the differential equation representing the family of curves $y = ae^{bx+c}$,	2018	2
34	Find the general solution of the differential equation $\frac{dy}{dx} - y = \sin x$	2017	6
33	given that $y = 0$ when $x = 1$. Find the general solution of the differential equation $y dx - (x + 2y^2) dy = 0$.	2017	4
32	Find the particular solution of the differential equation $(x - y)\frac{dy}{dx} = (x + 2y)$,	2017	4

4S.No.	VECTOR ALGEBR	YEAR	MARKS
1	Find the value of p if $(i + 6j + 27k) \times (i + 3j + pk) = \vec{0}$	2009	1
2	If \vec{p} is a unit vector and $(\vec{x} - \vec{p})(\vec{x} + \vec{p})$ =80 then find $ \vec{x} $	2009	1
3	The scalar product of the vector $i + j + k$ with the unit vector along the sum of vector $2i + 4j - 5k$ and $\lambda i + 2j + 3k$ is equal to one. Find the value of λ	2009	4
4	Vector \vec{a} and \vec{b} are such that $ \vec{a} = \sqrt{3}, \vec{b} = \frac{2}{3}$ and $(\vec{a} \times \vec{b})$ is the unit vector.	2010	1
	Write the angle between \vec{a} and \vec{b} .		
5	Write a vector of magnitude 9 units in the direction of vector $-2i + j + 2k$	2010	1
6	Find $\lambda if (2i + 6j + 14k) \times (i - \lambda j + 7k) = \vec{0}$	2010	1
7	Vector \vec{a} and \vec{b} are such that $ \vec{a} \cdot \vec{b} = \vec{a} \times \vec{b} $, then what is the angle between \vec{a} and \vec{b}	2010	1
8	If $\vec{a} = i + j + k$, $\vec{b} = 4i - 2j + 3k$ and $\vec{c} = i - 2j + k$, find a vector of	2010	4
	magnitude 6 units which is parallel to the vector $2\vec{a} - \vec{b} + 3\vec{c}$.		

	OR		
	Let $\vec{a} = i + 4j + 2k$, $\vec{b} = 3i - 2j + 7k$ and $\vec{c} = 2i - j + 4k$. Find a vector \vec{d}		
	which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d} = 18$		
9	Write the angle between two vector \vec{a} and \vec{b} with magnitude $\sqrt{3}$ and 2	2011	1
	respectively having $\vec{a} \cdot \vec{b} = \sqrt{6}$		
10	Write the projection of the vector $i - j$ on the vector $i + j$	2011	1
11	Write the unit vector in the direction of the vector $\vec{a} = 2i + j + 2k$	2011	1
12	Using vector, find the area of the triangle with vertices A(1,1,2), B(2,3,5) and	2011	4
	C(1,5,5).		
13	Write the value of: $(i \times j) \cdot k + i \cdot j$	2012	1
14	Find the scalar components of vector \overrightarrow{AB} with initial point A(2,1) an terminal point(-5,7)	2012	1
15	Write the value of: $(k \times j) \cdot i + j \cdot k$	2012	1
16	Let $\vec{a} = i + 4j + 2k$, $\vec{b} = 3i - 2j + 7k$ and $\vec{c} = 2i - j + 4k$. Find a vector \vec{p} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{p} = 18$	2012	4
17	P and Q are two points with position vectors $\vec{3a} - 2\vec{b}$ and $\vec{a} + \vec{b}$ respectively. Write the position vector R which divides the line segment PQ in the ratio 2: 1 externally.	2013	1
18	Find $ \vec{x} $ If \vec{a} is a unit vector and $(\vec{x} - \vec{a})(\vec{x} + \vec{a})$ =15	2013	1
19	Write a unit vector in the direction of the sum of the vectors $\vec{a} = 2i - j + 2k$ and $\vec{b} = -i + j + 3k$	2013	1
20	If $\vec{a} = i - j + 7k$ and $\vec{b} = 5i - j + \lambda k$, then find the value of λ so that $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ are perpendicular vectors.	2013	4
21	If $\vec{a} = i + j + k$ and $\vec{b} = i - j$ and \vec{c} is such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$	2013	4
22	Using vector, find the area of the triangle with vertices A(1,2,3), B(2,-1,4) and		1
	C(4,5,-1).	2013	4
23	Find the value of p for which vectors $\vec{a} = 3i + 2j + 9k$ and $\vec{b} = i - 2pj + 3k$ are parallel	2014	1
24	If $\vec{a} = 2i + j + 3k$, $\vec{b} = -i + 2j + k$ and $\vec{c} = 3i + j + 2k$ then find $\vec{a} \cdot (\vec{b} \times \vec{c})$	2014	1
25	Find a vector \vec{a} of magnitude $5\sqrt{2}$, making an angle $\frac{\pi}{4}$ with x- axis, $\frac{\pi}{2}$ with y- axis and an acute angle θ with z-axis.	2014	1
26	If \vec{a} and \vec{b} are perpendicular vectors, $ \vec{a} + \vec{b} $ and $ \vec{a} =5$, find the value of $ \vec{b} $.	2014	1
27	The scalar product of vectors $\vec{a} = i + j + k$ with the unit vector along the sum	2014	4
	of vectors $\vec{b} = 2i + 4j - 5k$ and $\vec{c} = \lambda i + 2j + 3k$ is equal to one. Find the value of λ and hence find the unit vector along $\vec{b} + \vec{c}$		
28	In a triangle OAC, if B is the mid-point of side AC and $\overrightarrow{AC} = \overrightarrow{a}$, and $\overrightarrow{OB} = \overrightarrow{b}$, then what is \overrightarrow{OC} ?	2015	1
29	Find a vector of magnitude $\sqrt{171}$ which is perpendicular to both of the vectors $\vec{a} = i + 2j - 3k$ and $\vec{b} = 3i - j + 2k$	2015	1
30	Let $\vec{a} = i + 4j + 2k$, $\vec{b} = 3i - 2j + 7k$ and $\vec{c} = 2i - j + 4k$. Find a vector \vec{d}	2015	4
	which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d} = 27$.	2242	
31	If $\vec{a} = 4i - j + k$, $\vec{b} = 2i - 2j + k$, find a vector parallel to the vector $\vec{a} + \vec{b}$.	2016	1

).		YEAR	MARK
	THREE DIMENSIONAL GEOMETRY	VEAD	
			L
44	If $\vec{a} = \hat{\imath} - 2\hat{\jmath} + 3\hat{k}$ and \vec{b} is such that $\vec{b} \cdot \vec{b} = \left \vec{b}\right ^2$ and $\left \vec{a} - \vec{b}\right = \sqrt{7}$ then find $\left \vec{b}\right $	2020	1
	Find the unit vector perpendicular to each of the vectors $\vec{a} = 4\hat{i} + 3\hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} - \hat{j} + 2\hat{k}$.		
	OR Find the unit vector perpendicular to each of the vectors $\vec{a} = 4\hat{i} + 2\hat{i} + \hat{k}$ and		
43	Find If $ \vec{a} $ and $ \vec{b} $ If $ \vec{a} =2$ $ \vec{b} $ and $(\vec{a}-\vec{b})(\vec{a}+\vec{b})=12$	2020	2
42		2020	1
	OR The projection of $\hat{i} - \hat{j}$ on the vector $\hat{i} + \hat{j}$ is		
41	If \vec{a} is a non-zero vector, then $(\vec{a} \cdot \hat{\imath})\hat{\imath} + (\vec{a} \cdot \hat{\jmath})\hat{\jmath} + (\vec{a} \cdot \hat{k})\hat{k} =$	2020	1
	(iv) 90°		
40	If $\vec{a} \cdot \vec{b} = \frac{1}{2} \vec{a} \vec{b} $ then the angle between \vec{a} and \vec{b} is (i) 0° (ii) 30° (iii) 60°	2020	1
	of λ and hence find the unit vector along $\vec{b} + \vec{c}$.		
	the vectors $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\vec{c} = \lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to 1. Find the value		-
39	The scalar product of vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of	2019	4
	Find $ \vec{a} \times \vec{b} $, if $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + 5\hat{j} - 2\hat{k}$.		
	collinear.		
	Show that the points $A(-2\hat{\imath} + 3\hat{\jmath} + 5\hat{k})$, $B(\hat{\imath} + 2\hat{\jmath} + 3\hat{k})$ and $C(7\hat{\imath} - \hat{k})$ are		
	$7\hat{j} - 3\hat{k}$ and $7\hat{i} - 5\hat{j} - 3\hat{k}$ SET-1,2		
	Find the volume of cuboid whose edges are given by $-3\hat{\imath} + 7\hat{\jmath} + 5\hat{k}, -5\hat{\imath} + 3\hat{\imath}$		
	OR		
38	If $ \vec{a} =2$, $ \vec{b} =7$ and $\vec{a} \times \vec{b}=3\hat{i}+2\hat{j}+6\hat{k}$ find the angle between \vec{a} and \vec{b}	2019	2
	which is perpendicular to both \vec{c} and \vec{b} and $\vec{d} \cdot \vec{a} = 21$.	-010	
36 37	If θ is the angle between two vectors $i - 2j + 3k$ and $3i - 2j + k$ find $\sin \theta$ Let $\vec{a} = 4i + 5j - k$, $\vec{b} = i - 4j + 5k$ and $\vec{c} = 3i + j - k$. Find a vector \vec{d}	2018 2018	2
26	9/2	2010	
	magnitude such that the angle between them is 60° and their scalar product is		
35	Find the magnitude of each of the two vectors \vec{a} and \vec{b} , having the same	2018	1
	$\vec{b}_1 + \vec{b}_2$, where \vec{b}_1 is parallel to \vec{a} and \vec{b}_2 is perpendicular to \vec{a} .	_ ,	
34	find the area of the triangle. If $\vec{a} = 2i - j - 2k$ and $\vec{b} = 7i + 2j - 3k$, then express \vec{b} in the form of $\vec{b} =$	2017	4
	and $3i - 4j - 4k$ respectively, are the vertices of a right-angled triangle. Hence		
	Show that the points A, B, and C with position vectors $2i - j + k, i - 3j - 5k$	2017	4
33			

S.No.	THREE DIMENSIONAL GEOMETRY	YEAR	MARKS
1	Write the direction cosines of a line equally inclined to the three coordinate axes.	2009	1
2	Find the shortest distance between two lines: $\vec{r} = (i + 2j + 3k) + \lambda(i - 3j + 2k)$ $\vec{r} = (4 + 2\mu)i + (5 + 3\mu)j + (6 + \mu)k$	2009	4
3	Find the shortest distance between two lines: $\vec{r} = (2i + j - k) + \mu(3i - 5j + 2k)$	2009	4
	$\vec{r} = (1 + 2\lambda)\mathbf{i} + (1 - \lambda)\mathbf{j} + \lambda\mathbf{k}$		

	\rightarrow (0, ,) (0, ,) (0, ,) (0,)		
4	Find the shortest distance between two lines: $\vec{r} = (2i - j - k) + \mu(2i + j + 2k)$ $\vec{r} = (1 + \lambda)i + (2 - \lambda)j + (\lambda + 1)k$	2009	4
	$T = (1 + \lambda)I + (2 - \lambda)J + (\lambda + 1)K$		
5	Find the equation of the plane determined by the points A(3,-1,2), B(5,2,4) and	2009	6
	C(-1,-1,6). Also find the distance of the point P(6,5,9) form the plane.		
6	Write the distance of the following plane from the origin: $2x - y + 2z + 1 = 0$	2010	1
_	r+2 v+1 z-3	2010	
7	Find the point on the line $\frac{x+2}{3} = \frac{y+1}{2} = \frac{z-3}{2}$ at a distance of 5 units from the point	2010	4
	P(1,3,3)		
	OR		
	Find the distance of the point P(6,5,9) from the plane determined by the points		
	A(3,-1,2), B(5,2,4) and C(-1,-1,6)		
8	Find the equation of the plane passing through the point $P(1,1,1)$ and containing the	2010	6
	line $\vec{r} = (-3i + j + 5k) + \lambda(3i - j - 5k)$. Also show that the plane contains the line		
	$\vec{r} = (-i + 2j + 5k) + \mu(i - 2j - 5k)$		_
9	Find the coordinate of the foot of the perpendicular and the perpendicular distance	2010	6
	of the point P(3,2,1) form the plane $2x - y + z + 1 = 0$. Find the image of the point		
10	in the plane.	2011	1
10	Write the direction cosines of the line joining the points (1,0,0) and (0,1,1)	2011	1
11	Write the vector equation given by $\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$	2011	1
12	Find the shortest distance between two lines:	2011	4
	$\vec{r} = (1-t)i + (t-2)j + (3-2t)k$ and $\vec{r} = (s+1)i + (2s-1)j - (2s+1)k$		
13	Find the equation of the plane passing through line intersection of the planes $2x + x^2$	2011	6
	$y - z = 3$ and $5x - 3y + 4z + 9 = 0$ and parallel the line $\frac{x-1}{2} = \frac{y-3}{4} = \frac{z-5}{5}$		
14	Find the distance of the point (-1,-5,-10) from the point of intersection of planes $\vec{r} =$	2011	6
	$(2i - j + 2k) + \lambda(3i + 4j + 2k)$ and the plane $\vec{r} \cdot (i - j + k) = 5$		
15	Find the equation of the plane passing through line intersection of the planes \vec{r} .	2011	6
	$(i+j+k) = 1$ and $\vec{r} \cdot (2i+3j-k) + 4 = 0$ and parallel to x- axis.		
16	Write the distance of the following plane from the origin: $3x - 4y + 12z = 3$	2012	1
17	Find the coordinate of the point where the line through the points (3,-4,-5) and (2,-	2012	4
	3,1) crosses the plane $3x + 2y + z + 14 = 0$		
18	Find the coordinate of the point where the line through the points (3,4,1) and (5,1,6)	2012	4
	crosses the plane XY – plane.		
19	Find the coordinate of the point where the line through the points (3,-4,-5) and (2,-	2012	4
20	3,1) crosses the plane $2x + y + z = 7$	2012	6
20	If the lines $\frac{x-1}{-3} = \frac{y-2}{-2k} = \frac{z-3}{2}$ and $\frac{x-1}{k} = \frac{y-2}{1} = \frac{z-3}{5}$ are perpendicular, find the value of	2012	6
	k and hence find the equation and the plane containing these lines.		
21	Find the coordinate of the foot of the perpendicular and the length of perpendicular	2012	6
	drawn from the point P(5,4,2) to the line $\vec{r} = (-i + 3j + k) + \lambda(2i + 3j - k)$. Also		
	find the image of the point in these plane.		
22	Find the length and the foot of the perpendicular from the point P(7,14,5) to the	2012	6
22	plane $2x + 4y - z = 2$. Find the image of the point in the plane.	2042	
23	Find the length of the perpendicular from origin to the plane : $2x - 3y + 6z + 21 = 0$	2013	1
24	0 Show that the lines are intersecting $\vec{x} = (2i + 2i - 4k) + i(i + 2i + 2k)\vec{x} = (5i + 2k)\vec{x}$		6
24	Show that the lines are intersecting : $\vec{r} = (3i + 2j - 4k) + \lambda(i + 2j + 2k)\vec{r} = (5i - 2j) + \mu(3i + 2j + 6k)$	2013	6
	OR	2012	
	Find the vector equation of the plane through the points (2,1,-1) and (-1,3,4) and		
	perpendicular to the plane $x - 2y + 4z = 10$		
		1	1

<u> </u>		0040	6
25	Find the equation of the plane passing through the line intersection of the plane \vec{x} (i.e. \vec{x}) and \vec{x} (i.e. \vec{x}) and \vec{x} (i.e. \vec{x}).	2013	6
	$\vec{r} \cdot (i+3j-6=0$ and $\vec{r} \cdot (3i-j-4k)=0$, whose perpendicular distance from		
	origin is unity. OR		
	Find the vector equation of the line passing through the point (1,2,3) and parallel to		
	the plane $\vec{r} \cdot (i - j - 2k) = 5$, and $\vec{r} \cdot (3i + j + k) = 6$,		
26	Find the vector equation of the plane determined by the points A(3,-1,2), B(5,2,4) and	2013	6
	C(-1,-1,6). Also find the distance of the point (6,5,9) from this plane.		
27	Find the coordinate of the point where the line through the points (3,-4,-5) and (2,-	2013	6
	3,1) crosses the plane, passing through the points (2,2,1), (3,0,1) and (4,-1,0)		
28	If the Cartesian equation of a line is $\frac{3-x}{5} = \frac{y+4}{-7} = \frac{2z-6}{4}$, write the vector equation for	2014	1
	the line.		
29	Show that the four points A, B, C and D with position vectors $4i + 5j + k$, $-i - k$,	2014	4
	3i + 9j + 4k and $4(-i + j + k)$ respectively are coplanar.		
30	A line passes through (2,-1,3) and perpendicular to the line	2014	4
	$\vec{r} = (i + j - k) + \lambda(2i - 2j + k)$ and $\vec{r} = (2i - j - 3k) + \mu(i + 2j + 2k)$. Obtain its		
	equation in the vector and Cartesian form.		
31	Find the vector Cartesian equation of the line passing through the points (2,1,3) and	2014	4
	perpendicular to the lines $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{2}$ and $\frac{x}{2} = \frac{y}{2} = \frac{z}{z}$		
32	perpendicular to the lines $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$ and $\frac{x}{-3} = \frac{y}{2} = \frac{z}{5}$ Find the value of p , so that the lines $l_1: \frac{1-x}{3} = \frac{7y-14}{p} = \frac{z-3}{2}$ and $\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$ are	2014	4
			-
	perpendicular to each other. Also find the equation of a line passing through a point		
	$(3,2,-4)$ and parallel to line l_1		
33	Find the equation of the plane passing through line intersection of the planes $x + 1$	2014	6
	y + z = 1 and $2x + 3y + 4z = 5$ which is perpendicular to the plane $x - y + z = 0$		
	Also find the distance of the plane obtained above form the origin.		
	OR Find the distance of the point (2,12,5) form the points of intersection of the line $\vec{r} =$		
	$(2i - 4j + 2k) + \lambda(3i + 4j + 2k)$ and the plane $\vec{r} \cdot (i - 2j + k) = 0$		
	$(2i + j + 2k) + \lambda(3i + + j + 2k)$ and the plane $i + (i + 2j + k) = 0$		
34	Find the angle between the lines $2x = 3y = -z$ and $2x = -y = -4z$.	2015	1
35	Find the shortest distance between the lies: $\vec{r} = i + 2j + 3k + \lambda(2i + 3j + 4k)$	2015	4
	$\vec{r} = 2i + 4j + 5k + \mu(4i + 6j + 8k)$ OR		-
	Find the equation of plane passing through line of intersection of the plane $2x + y - y$		
	$z = 3$ and $5x - 3y + 4z + 9 = 0$ and is parallel to the line $\frac{x-1}{2} = \frac{y-3}{4} = \frac{5-z}{-5}$		
36	Find the equation of the plane passing through the point P(6,5,9) and parallel to the	2015	6
50	plane determined by the points $A(3,-1,2)$, $B(5,2,4)$ and $C(-1,-1,6)$. Also find the	2012	U
	distance of this plane from the point A.		
37	Write the sum of the intercepts cut off by the plane $\vec{r} \cdot (2i + j - k) - 5 = 0$ on the	2016	1
57	three axes. $(2i + j + k) = 0$ on the	2010	-
38	Find the coordinates of the foot of the perpendicular drawn from the point A(-1, 8, 4)	2016	4
	to the line joining the points $B(0, -1, 3)$ and $C(2, -3, -1)$. Hence find the image of the		
	point A in the line BC.		
39	Show that the four points A(4, 5, 1),B (0, -1, -1),C(3, 9, 4)and D(-4, 4, 4) are coplanar.	2016	4
40	Find the equation of the plane which contains the line intersection of the planes \vec{r} .		
	$(i-2j+3k)-4=0$ and $\vec{r} \cdot (-2i+j+k)+5=0$ whose intercepts on x-axis is		
	equal to that of on y –axis.		
41	Find the distance between the planes $2x - y + 2z = 5$ and $5x - 2.5y + 5z = 20$.	2017	1
		•	

42	The x – coordinate of a point on the line joining the points P(2, 2, 1) and Q(5, 1, -2) is	2017	2
42	4. Find its <i>z</i> -coordinate.	2017	Z
43	Find the value of λ , if four points with position vectors $3i + 6j + 9k$, $i + 2j + 3k$	2017	4
	$2i + 3j + k$ and $4i + 6j + \lambda k$ are coplanar		
44	Find the value of x such that the points A(3, 2, 1), B(4, x, 5), C(4, 2, -2) and D(6, 5, -1)	2017	4
	are coplanar.		
45	Find the coordinates of the point where the line through the points $(3, -4, -5)$ and $(2, -4, -5)$	2017	6
	3, 1) crosses the plane determined by the points (1, 2, 3), (4, 2, -3) and (0, 4, 3).		
	OR		
	A variable plane which remains at a constant distance $3p$ for the origin cuts the		
	coordinate axes at A, B, C. Show that the locus of the centroid of the triangle ABC is		
	$\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{p^2}.$		
46	Find the shortest distance between the lies: $\vec{r} = 4i - j + \lambda(i + 2j - 3k)$	2018	4
	$\vec{r} = i - j + 2k + \mu(2i + 4j - 5k)$		
47	Find the distance of the point (-1,-5,-10) from the point of intersection of planes \vec{r} =	2018	6
	$(2i - j + 2k) + \lambda(3i + 4j + 2k) \text{ and the plane } \vec{r} \cdot (i - j + k) = 5$		
48	Write the direction cosines of the line which makes equal angles with the coordinate	2019	1
	axes.		
	OR		
	A line passes through the point with position vector $2\hat{i} - \hat{j} + \hat{k}$ and is in the direction		
	of the vector $\hat{i} + \hat{j} - 2\hat{k}$. Find the equation of the line in the Cartesian form. SET-1		
	A line passes through the point with position vector $2\hat{i} - \hat{j} + 4\hat{k}$ and is in the		
	direction of the vector $\hat{i} + \hat{j} - 2\hat{k}$. Find the equation of the line in the Cartesian form. SET-2		
49		2019	4
75	If the lines $\frac{x-1}{-3} = \frac{y-2}{2\lambda} = \frac{z-3}{2}$ and $\frac{x-1}{3\lambda} = \frac{y-1}{2} = \frac{z-6}{-5}$ are perpendicular, find the value of	2015	-
	λ . Hence find the whether the lines are intersecting or not. SET-1		
	Find the Cartesian and vector equation of the plane passing through the points $(2, 5, -2)$ $(-2, -2, 5)$ and $(5, 2, -2)$		
50	(2, 5, -3), (-2, -3, 5) and $(5, 3, -3)$. SET-2 Find the vector and Cartesian equation of the passing through points having position	2019	6
50	$\hat{i} + \hat{j} - 2\hat{k}, \ 2\hat{i} - \hat{j} + \hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$. Write the equation of the plane passing	2019	0
	through a point (2, 3, 7) and parallel to the plane obtained above. Hence, find the		
	distance between the two parallel planes.		
	OR		
	Find the equation of the plane passing through $(2, -1, 2)$ and $(5, 3, 4)$ and the plane		
	passing through $(2, 0, 3)$, $(1, 1, 5)$ and $(3, 2, 4)$. Also, find their point of intersection.		
51	Two lines $x = ay + b$, $z = cy + d$ and $x = a'y + b'$, $z = c'y + d'$ are	2020	1
	perpendicular to each other if (i) $\frac{a}{a'} + \frac{c}{c'} = 1$ (ii) $\frac{a}{a'} + \frac{c}{c'} = 1$ (iii) $aa' + cc' = 1$ (iv)		
	aa' + cc' = -1		
52	Two planes $x - 2y + 4z = 10$ and $18x + 17y + kz = 50$ are perpendicular, if k is	2020	1
	equal to (i)-4 (ii) 4 (iii) 2 (iv) -2		
53	Find equation of plane with intercept 3 on y axis and parallel to xz-plane.	2020	2
54	Find the distance between the parallel $2x + y + 2z = 8$ and $4x + 2y + 4z + 5 = 0$	2020	1
55	The line $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ is parallel to the plane	2020	1
	(a) $2x + 3y + 4z = 0$ (b) $3x + 4y - 5z = 7$ (c) $2x + y - 2z = 0$ (d) $x - y + z = 2$		
56	Find the image of the point $(-1, 3, 4)$ in the plane $x - 2y = 0$	2020	6

S.No.	LINEAR PROGRAMMING PROBLEM	YEAR	MARKS
1	A dealer wishes to purchase a number of fans and sewing machines. He has	2009	6
	only Rs. 5760 to invest and has a space for at most 20 items. A fan costs him Rs.		
	360 and a sewing machine Rs. 240. His expectation is that he can sell a fan at a		
	profit of Rs. 22 and a sewing machine at a profit of Rs. 18. Assuming that he can		
	sell all the items that he can buy, how should he invest his money in order to		
	maximize the profit? Formulate this a linear programming problem and solve it		
	graphically.		
2	One kind of cake required 300g of flour and 15g of fat, another kind of cake	2010	6
	requires 150g of flour and 30g of fat. Find the maximum number of cakes which		
	can be made from 7.5kg of flour and 600g of fat, assuming that there is no		
	shortage of the other ingredients used in making the cakes. Make it as an L.P.P.		
	and solve it graphically.		
3	A merchant planes to sell two types of personal computer- a desktop model	2011	6
	and a portable model that will cost Rs. 25,000 and Rs. 40,000 respectively. He		
	estimates that the total monthly demand of computers will not exceed 250		
	units. Determine the number of units of each type of computers which the		
	merchant should stock to get maximum profit if he if he doesn't wants to invest		
	more than Rs. 70 lakhs, and his profit on the desktop model is Rs. 4,500 and on		
	the portable model is Rs. 5000. Make it as an L.P.P. and solve it graphically		
4	A dietician wishes to mix two types of foods in such a way that the vitamin	2012	6
	contain of the mixture contains at least 8 units of vitamin A and 10 units of	_	_
	vitamin c. Food I contains 2 units/kg of vitamin A and 1 unit/kg of vitamin of C		
	while food II contains 1 unit/kg of vitamin A and 2 units/kg of vitamin C. It costs		
	Rs. 5 per kg to purchase food I and Rs. 7 per kg to purchase food II. Determine		
	the minimum cost of such a mixture. Formulate the above L.P.P. and solve it		
	graphically.		
5	A manufacturer consider that the men and women are equally efficient and so	2013	6
5	pays them at the same rate. He has 30 and 17 units of workers (male and	2010	Ū
	female) and capital respectively, which he used to produce one unit of A, 2		
	workers and 3 units of capital are required while 3 workers and 1 unit of capital		
	is required to produce one unit B. If A and B are priced at Rs. 100 and Rs. 120		
	per unit respectively. How should he use his resource to maximize the total		
	revenue? Form the above as an L.P.P. and solve graphically.		
	L.P.P. you agree with this view of the manufacturer that men and women		
	workers are equally efficient and so should be paid at the same rate?		
6	A manufacturer company makes two types of teaching aids A and B of	2014	6
0	mathematics for class XII. Each type of A requires 9 labor hours of fabricating	2014	0
	and 1 labor hour for finishing. Each type of B requires 12 labor hour for		
	fabricating and 3 labor hour for finishing. For fabricating and finishing, the		
	maximum labor hour available per week are 180 and 30 respectively. The		
	company makes a profit of Rs. 80 on each piece of type A and Rs. 120 on each		
	piece of type B. How many pieces of type A and type B should be manufactured		
	per week to get a maximum profit? Make it as an LPP and solve graphically.		
-	What is the maximum profit per week?	2015	
7	Solve the following LPP graphically. Minimize $Z = 3x + 5y$ subject to the	2015	6
	constraints		
-	$x + 2y \ge 0, x + y \ge 6, 3x + y \ge 8$ and $x, y \ge 0$		
8	A retired person wants to invest an amount of Rs. 50,000. His broker		
	recommends investing in two types of bonds 'A' and 'B' yielding 10% and 9%		
	return respectively on the invested amount. He decides to invest at least Rs.		

					1	1
				so wants to invest at		
	least as much in bon		. Solve this linear pro	ogramming problem		
	graphically to maxim	ize his return.				
9	Two tailor, A and B e	arn Rs. 300 and Rs	. 400 per day respec	tively. A can stitch 6	2017	2
	shirts and 4 pairs of	trousers while B ca	n stitch 10 shirts and	d 4 pairs of trousers		
	per day. To find how	many days should	each of them work a	and if it is desired to		
	produce at least 60 s					
	formulate this as an			,		
10	Maximise $Z = x + 2$		onstraints $x + 2y > 2y$	100.2 x - y <	2017	4
10	$2x + y \ge 200$ Solv	-		100,2% 9 -	2017	
11	Solve the following L			5v under the	2017	4
	constraints $x + y \leq x$			by under the	2017	-
12	Solve the following I			y under the	2017	4
12	-	• • •	•		2017	4
10	constraints $4x + 6y$				2010	<u> </u>
13	A factory manufactu				2018	6
	requires the use of t					
	4 minutes on the au					
	manufacture a packa	-				
	3 minutes on the ha					
	B. Each machine is a	vailable for at the r	nost 4 hours on any	day. The		
	manufacturer					
	can sell a package of	•				
	Rs 1. Assuming that	he can sell all the s	crews he manufactu	res, how many		
	packages of each typ	e should the facto	ry owner produce in	a day in order to		
	maximise his profit?	Formulate the abo	ve LPP and solve it g	raphically and find		
	the maximum profit	?				
14	A company produce	s two types of good	ls, A and B, that requ	uire gold and silver.	2019	6
	Each unit of A requir	es 3 g of silver and	1g of gold while tha	t of type B requires		
	1g of silver and 2g of	f gold. The compar	ny can use at the mo	st 9g of silver and 8g		
	of gold. If each unit o	of type A brings a p	rofit of Rs. 40 and th	hat of type B Rs. 50,		
	find the number of u					
	maximize profit. For	mulate the above L	.PP and solve it grap	hically and also find		
	the maximum profit					
15			x + by has same ma	ximum value on two	2020	1
	corner points of the		5			
	ocurs (i) 0 (ii) 2 (iii			тах		
16	A manufacturer has		and III installed in t	nis factory. Machine		
				whereas machine III		
	must be operated for	• •				
	N which requiring us			•		
	producing 1 units of			-		
	table		in ce machines are g			
	If he makes a profit	of Rs 600 and Rs 1	00 on each unit of M	and N respectively		
	How many units of e					
	assuming that he cal			-		
	assuming tridt He Cd		ie produced. Wildt is	ο παλιπιμπ μι υπι ε		
	item	Number	of hours required or	n machines		
	M	1	2	1		
	N	2	1	1.25		

S.No.		PRO	BABILITY				YEAR	MARKS
1	On a multiple choice only one is correct) f candidate would get	or each of the fiv	e questions, V	/hat is the	probabili		2009	4
2	A man is known to speak the truth 3 out of 5 times. He throws a die and reports that it is a number greater than .find the probability that it is actually a number greater than 4.					•	2009	6
3	Coloured balls distril	outed in three bag	gs as shown in	the follow	/ing table	:	2009	6
	Bag		Colour of	the ball				
		Black	Whi	te	Re	d	< $>$	
	I	1	2		3			
	II	2	4		1			
		4	5		3			
	A bag is selected at r selected bag. They h came from bag I?	appen to be blacl	k and rd. Wha [.]	t is the pro	bability t	nat they		
4	Coloured balls distril	outed in three ba			ing table		2009	6
	Bag		Colour of					
		Black	Whi	te	Re	d		
		2	1		3			
		4	2		1			
	III	5	4		3			
	A bag is selected at selected bag. They h came from bag II?							
5	A family has two chil that (i) at least one c	of the children is a	a boy. (ii) the e	lder child	is boy		2010	4
6	A bag contains four l white. What is the p	robability that all	ball are white	?	are foun	d to be	2010	6
7	A random variable h	as following prob	ability distribu			· · · · · · · · · · · · · · · · · · ·	2011	4
	X 0 1		-	5	6	7		
	P(X) 0	$k \qquad 2 k$	2k $3k$	k^2	$2k^2$	$7k^2$ + k		
	Determine: (i) k (ii) Find the probability		OR			hrow a		
	die.							_
8	Given three identica coins are gold coins, gold coin and one sil coin. If the coin is of	in box II both are ver coin. A perso	silver coins a n chooses a bo	nd in box II ox at rando	ll, there is om and ta	one kes out a	2011	6
9	is also of gold? Two cards are drawn simultaneously (without replacement) from a well- shuffled pack of 52 cards. Find the mean and variance of the number of red cards.					2012	4	
10	Suppose a girl throw notes the number of	-					2012	6

	note whether a head or tail is obtained. If she obtained exactly one head, what is the probability that she threw 1,2,3, or 4 with the die?		
11	The probability of two students A and B coming to the school in time are $\frac{3}{7}$, $\frac{5}{7}$ respectively. Assuming that the events 'A coming in time' and 'B coming in time' are independent, find the probability of only one of them coming to the school in time. Write at least one advantage of coming to the school in time. If P(A comes in school time)= $\frac{3}{7}$	2013	4
12	P speaks truth 70% of the cases and Q 80% of the cases. In what % of cases they likely to agree in stating the same fact? Do you think, when they agree, mean both are speaking truth?	2013	4
13	P speaks truth 75% of the cases and Q 90% of the cases. In what % of cases they likely to contradict in stating the same fact? Do you think, that statement of B is true?	2013	4
14	In a hockey match, both team A and B scored same number of goals up the end of the game, so to decide the winner, the referee asked both the captain to throw a die alternatively and decided that the team, whose captain gets a six first, will be declared the winner. If the captain of team A was asked to start, find their respective probabilities of winning the match and state whether the decision was fair or not?	2013	6
15	An experiment succeeds thrice as often as it fails. Find the probability that the next five trails, there will e at least 3 successes.	2014	4
16	There are three coins. One is a two-headed coin (having on both faces), another is a biased coin that comes up heads 75% of the times and third is also a biased coin that comes up tails 40% of the times> One of the three coins is chosen at random and tossed, and it shows heads. What is the probability that it was the two-headed coin? OR	2014	6
	Two numbers are selected at random (with replacement) from the first six positive integers. Let X denotes the larger of the two numbers obtained. Find the probability distribution of the random variable X, and hence find the mean of the distribution.		
17	A man takes a step with probability 0.4 and backward with probability 0.6. find the probability that at the end of 5 steps, he is one step away from the starting point.	2015	4
	OR Suppose a girl throw a die. If she gets a 1 or 2, she tosses a coin three times and notes the number of 'tails'. If she gets 3,4,5 or 6, she tosses a coin once and notes whether a 'head' or 'tail' is obtained. If she obtained exactly one 'tail', what is the probability that she threw 3, 44 5 or 6 with the die?		
18	A bag contains 4 white balls and 2 black balls, while another bag Y contains 3white and 3 black balls. Two balls are drawn (without replacement) at random from one of the bags and were found to be one white and one black. Find the probability that the balls were drawn from bag Y. OR A and B throw a pair of die alternatively till one of them gets a total of 10 and	2016	4
19	wins the game. Find their respectively probabilities of wining, if A starts first. Three number are selected at random (without replacement) from first six positive integers. Let X denotes the largest of the three numbers obtained. Find	2016	6

	the probability distribution of X. Also, find the mean and variance of the		
	distribution.		
20	A die, whose faces are marked 1, 2, 3 in red and 4, 5, 6 in green, is tossed. Let A be the event "number obtained is even" and B be the event "number is red".	2017	2
	Find if A and B are independent events.		
21	There are four cards numbered with 1, 3, 5 and 7, one number on one card.	2017	4
	Two cards are drawn at random without replacement. Let X denotes the sum of the number on the two cards. Find the mean and variance of X.		
22	Of the students in a school, it is known that 30% have 100% attendance and 70% students are irregular. Previous years result report that 70% of the all students attain A grade in their angular superinsting. At the angle of the grade in the second	2017	4
	students attain A grade in their annual examination. At the end of the year, one student is chosen at random from the school and he was found to have an A grade. What is the probability that the student has 1005 attendance? Is	5	
	regularity required only in school? Justify your answer.	$\langle \rangle$	
23	A black and a red die are rolled together. Find the conditional probability of	2018	2
23	obtaining the sum 8, given that red die resulted in a number less than 4.	2018	2
24		2010	4
24	Suppose a girl throws a die. If she gets 1 or 2, she tosses a coin 3 times and notes the number of tails. If she gets 3,4, 5 or 6 she tosses a coin once and note whether a head or tail is obtained. If she obtained exactly one tail, what is the probability that she threw 3, 4, 5 or 6 with the die?	2018	4
25	Two numbers are selected at random (without replacement) from first five positive integers. Let X denotes the larger of the two numbers obtained. Find the mean and variance of the X.	2018	4
26	If $P(\bar{A}) = 0.7$, and $P(B) = 0.7$ and $P(B'_A) = 0.5$ then find $P(A'_B)$	2019	2
27	A coin is tossed 5 times. What is the probability of getting (i) 3 heads (ii) at most 3 heads?	2019	2
	OR		
	Find the probability distribution of X , the number of heads of simultaneous toss of two coins.		
28	There are three coins. One is a two-headed coin (having on both faces), another is a biased coin that comes up heads 75% of the times and third is unbiased coin. One of the three coins is chosen at random and tossed, and it shows heads. What is the probability that it was the two-headed coin?	2019	6
29	From the set {1, 2, 3, 4, 5} two number a and b ($a \neq b$) are chosen at random. The probability that $\frac{a}{b}$ is an integer is (i) $\frac{1}{3}$ (ii) $\frac{1}{4}$ (iii) $\frac{1}{2}$ (iv) $\frac{3}{5}$	2020	1
30		2020	1
50	A bag contains 3 white, 4 black and 2 red ball. If two balls are drawn at random(without replacement), then probability that both the balls are white is	2020	ľ
	(i) $\frac{1}{18}$ (ii) $\frac{1}{36}$ (iii) $\frac{1}{12}$ (iv) $\frac{1}{24}$		
31	Find $[P(A/B) + P(B/A)]$, if $P(A) = \frac{3}{10}$, $P(B) = \frac{2}{5}$ and $P(A \cup B) = \frac{3}{5}$.	2020	2
32		2020	4
52	A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails. Hence find the mean number of tails. OR	2020	4
	Suppose that 5 men out of 100 and 25 women out of 1000 are good operators. Assume that there equal number of men and women, find the probability		

	choosing a good operator.		
33	Three distinct numbers are chosen from first 50 natural numbers then find the	2020	2
	probability of that are three numbers are divisible by 2 and 3.		

IS CO